Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по зоологии.docx
Скачиваний:
6
Добавлен:
05.08.2019
Размер:
176.56 Кб
Скачать

1.Са́ркома́стигофо́ры, или Саркожгутиконосцы (лат. Sarcomastigophora) - от греч. sarcodes - мясистый — полифилетическая группа в некоторых старых системах рассматривалась в качестве типа свободноживущих и паразитических протозоа[1], которые передвигаются с помощью особых временных выростов цитоплазмы (псевдоподий) или бичевидных выростов (жгутиков). Насчитывают около 18000 видов.Содержание [убрать]

Строение

Строение Саркомастигофор, несмотря на относительную простоту их организации, отличается большим разнообразием. Главным образом это касается скелетных образовании, которые достигают у саркомастигофор большой сложности и совершенства (Класс Саркодовые). Очень большое количество видов известно в ископаемом состоянии благодаря хорошей сохранности скелетов многих групп саркодовых.

Передвижение

Некоторые одноклеточные могут перемещаться как с помощью псевдоподий, так и с помощью жгутиков. Иногда у одного и того же организма могут присутствовать оба вида органоидов одновременно или последовательно в течение жизненного цикла. Поскольку или жгутики, или ложноножки имеются хотя бы на одной из стадий жизненного цикла почти у всех эукариот, к данной группе могли быть отнесены самые различные, неродственные организмы.:)

Размножение и происхождение

Некоторым группам протистов свойственно только бесполое размножение. У большинства групп есть половой процесс в виде копуляции гамет (реже неспециализированных клеток) или конъюгации. Жгутиконосцы, видимо, стоят ближе к предковым группам простейших. Они разнообразнее по типам питания, органелл движения, типам оболочек клеток и т. п. О первичности жгутиковых форм свидетельствует и то, что саркодовые, которые размножаются половым путем, часто имеют гаметы со жгутиками. Среди жгутиконосцев есть переходные формы между "растительными" и "животными" организмами.

Места обитания

Саркомастигофоры обитают в морских и пресноводных водоемах, во влажной почве. Многие паразитируют в организме животных и человека.

Класс Саркодовые насчитывает около 10 000 видов и имеет наиболее примитивную организацию. Обитают в морях, пресных водоемах и могут вызывать заболевания человека. Представителем класса саркодовых может быть амеба протей, обитающая в прудах и канавах с илистым дном. Тело амебы достигает я длину 0,2 - 0,7 мм. Цитоплазма находится в непрерывном движении, в результате которого возникают цитоплазматические выросты - ложноножки, или псевдоподии. Псевдоподии служат не только для движения, но и для поглощения частиц пищи. Амеба фагоцитирует пищевые частицы (одноклеточные водоросли, клетки бактерий, мелких простейших и др.) ложноножками и втягивает их внутрь тела, где образуются пищеварительные вакуоли. В них благодаря ферментам происходит процесс переваривания пищи. Жидкости поступают пиноцитозом. Вакуоли с непереваренными остатками подходят к поверхности тела и выбрасываются наружу.

Кроме пищеварительных вакуолей в цитоплазме амебы видна сократительная вакуоль, которая периодически то появляется, то исчезает. Промежуток между двумя пульсациями равен 1 - 5 мин. Выделение осуществляется и через наружную мембрану. Дышит амеба растворенным в воде кислородом всей поверхностью тела.

Размножается амеба бесполым путем - делением пополам. При этом сначала втягиваются псевдоподии и амеба округляется. Затем происходит деление ядра митозом и на теле амебы появляются перетяжка, которая перешнуровывает тело на две равные части; в каждую отходит по одному ядру.

При наступлении неблагоприятных условий амеба инцистируется.

Некоторые виды амеб приспособлены к паразитическому образу жизни в кишечнике позвоночных и беспозвоночных животных. В толстом кишечнике человека паразитирует пять видов амеб. Четыре вида обитают в просвете кишечника, питаются бактериями и не вызывают заболеваний у человека. Один вид - дизентерийная амеба - при определенных условиях может вы-зывать у человека тяжелое заболевание - амебиаз (амебную дизентерию). Это заболевание встречается чаще всего в районах с жарким и теплым климатом. В организм человека дизентерийная амеба попадает на стадии цисты. Заражение происходит через немытые овощи, фрукты, некипяченую воду. В кишечнике под действием ферментов оболочка цисты растворяется и в просвет кишечника выходят четыре вегетативные малые формы, обитающие в просвете толстого кишечника, не вызывая заболевания. Такое взаимодействие малой формы амебы с организмом хозяина называют носительством.

При воздействии на человека различных неблагоприятных факторов, способствующих ослаблению организма, вегетативная малая форма внедряется в стенки кишечника, поселяясь между ворсинками. Здесь растет и превращается в патогенную крупную форму. Эта форма способна выделять протеолитические ферменты, разрушающие кишечный эпителий, вызывать язвенные поражения кишечника и питаться эритроцитами человека. Болезнь сопровождается кровавым поносом. При лечении крупная вегетативная форма снова превращается в малую, которая инцистируется. Больной выздоравливает или заболевание переходит в хроническую форму. Профилактика - мытье овощей и фруктов, питье кипяченой воды и соблюдение правил яичной гигиены.

Амеба

Обыкновенная амеба встречается в иле на дне прудов с загрязненной водой. Она похожа на маленький, едва заметный простым глазом бесцветный студенистый комочек, постоянно меняющий форму ("амеба" означает "изменчивая").

Тело амебы состоит из полужидкой цитоплазмы с заключенным внутрь нее небольшим пузырьковидным ядром. Амёба сотоит из одной клетки, но эта клетка - целый организм, ведущий самостоятельное существование.

Цитоплазма клетки находится в постоянном движении. Если ток цитоплазмы устремлется к одной какой-то точке поверхности амёбы, в этом месте на ее теле появляется выпячивание. Оно увеличивается, становится выростом тела - ложноножкой, в него перетекает цитолазма, и амёба таким способом передвигается. Амёбу и других простейших, способных образовывать ложноножки, относят к группе корненожек. Такое название они получили за внешнее сходство ложноножек с корнями растений.

У амёбы одновременно может образовываться несколько ложноножек, и тогда они окружают пищу - бактерии, водоросли, других простейших. Из цитоплазмы, окружающей добычу, выделяется пищеварительный сок. Образуется пузырек - пищеварительная вакуоль.

Пищеварительный сок растворяет часть веществ, входящих в состав пищи, и переваривает их. В результате пищеварения образуются питательные вещества, которые просачиваются из вакуоли в цитоплазму и идут на построение тела амебы. Нерастворенные остатки выбрасываются наружу в любом месте тела амёбы.

Амёба дышит растворенным в воде кислородом, который проникает в ее цитоплазму через всю поверхность ее тела. При участии кислорода происходит разложение сложных пищевых веществ цитоплазмы на более простые. При этом выделяется энергия, необходимая для жизнедеятельности организма.

Вредные вещества удаляются из организма амёбы через всю поверхность ее тела, а также через особый пузырек - сократительную вакуоль. Окружающая амёбу вода постоянно проиникает в цитоплазму, разжижая ее. Избыток этой воды с вредными веществами постепенно наполняет вакуоль. Время от времени содержимое вакуоли выбрасывается наружу.

Итак, из окружающей среды в организм амебы поступают пища, вода, кислород. В результате жизнедеятельности амебы они претерпевают изменения. Переваренная пища служит строительным материалом для построения тела амебы. Образующиеся вредные для амебы вещества удаляются наружу. Присходит обмен веществ. Не только амеба, но и все другие живые организмы не могут существовать без обмена веществ как внутри своего тела, так и с окружающей средой.

Питание амебы приводит к росту ее тела. Выросшая амеба приступает к размножению. Размножение начинается с изменения ядра. Оно вытягивается, поперечной бороздкой делится на две половинки, которые расходятся в разные стороны - образуются два новых ядра. Тело амебы разделяет на две части перетяжка. В каждую из них попадает по одному ядру. Цитоплазма между обеими частями разрывается, и образуются две новые амебы. Сократительная вакуоль остается в одной из них, в другой же возникает заново. Итак, амеба размножается делением надвое.

Питание и размножение амебы происходит в течение всего лета. Осенью при наступлении холодов амеба перестает питаться, тело ее становится округлым, на его поверхности выделяется плотная защитная оболочка - образуется циста. То же самое происходит при высыхании пруда, где живут амебы. В состоянии цисты амеба переносит неблагоприятные для нее условия жизни. При наступлении благоприятных условий амеба покидает оболочку цисты. Она выпускает ложноножки, начинает питаться и размножаться.

Диффлюгия

(Difflugia) — весьма обыкновенные пресноводные корненожки (см.) из группы Lobosa с псевдоподиями по большей части в виде цилиндрических выростов и лопастей, различным числом ядер и вакуолей и не совершенно наполненной телом раковиной, состоящей преимущественно из зерен песка и раковинок диатомовых водорослей; форма раковины довольно разнообразна у разных видов: яйцевидная с закругленным или заостренным концом, иногда с остриями, укорочено ретортообразная или почти сферическая

2. Общая характеристика класса жгутиконосцы

Класс Жгутиконосцы (Flagellata) насчитывает около 6000—8000 представителей. Это наиболее древняя группа простейших. Отличаются от саркодовых постоянной формой тела. Обитают в морских и пресных водах. Паразитические жгутиковые обитают в различных органах человека.

Характерная особенность всех представителей — наличие одного или более жгутиков, которые служат для передвижения. Расположены они преимущественно на переднем конце клетки и представляют собой нитевидные выросты эктоплазмы. Внутри каждого жгутика проходят микрофибриллы, построенные из сократительных белков. Прикрепляется жгутик к базальному тельцу, расположенному в эктоплазме. Основание жгутика всегда связано с кинетосомой, выполняющей энергетическую функцию.

Тело жгутикового простейшего, помимо цитоплазматической мембраны, покрыто снаружи пелликулой — специальной периферической пленкой (производной эктоплазмы). Она и обеспечивает постоянство формы клетки.

Иногда между жгутиком и пелликулой проходит волнообразная цитоплазматическая перепонка — ундулирующая мембрана (специфическая органелла передвижения). Движения жгутика приводят мембрану в волнообразные колебания, которые передаются всей клетке.

Ряд жгутиковых имеет опорную органеллу — аксостиль, который в виде плотного тяжа проходит через всю клетку.

Жгутиковые — гетеротрофы (питаются готовыми веществами). Некоторые способны также к автотрофному питанию и являются миксотрофами (например, эвглена). Для многих свободноживущих представителей характерно заглатывание комочков пищи (голозойное питание), которое происходит при помощи сокращений жгутика. У основания жгутика расположен клеточный рот (цистостома), за которым следует глотка. На ее внутреннем конце формируются пищеварительные вакуоли.

Размножение обычно бесполое, происходящее поперечным делением. Встречается и половой процесс в виде копуляции.

Типичным представителем свободноживущих жгутиковых является эвглена зеленая (Euglena viridis). Обитает в загрязненных прудах и лужах. Характерная особенность — наличие специального световоспринимающего органа (стигмы). Длина эвглены около 0,5 мм, форма тела овальная, задний конец заострен. Жгутик один, расположенный на переднем конце. Движение с помощью жгутика напоминает ввинчивание. Ядро находится ближе к заднему концу. Эвглена имеет признаки как растения, так и животного. На свету питание автотрофное за счет хлорофилла, в темноте — гетеротрофное. Такой смешанный тип питания называется миксотрофным. Эвглена запасает углеводы в виде парамила, близкого по строению к крахмалу. Дыхание эвглены такое же, как у амебы. Пигмент красного светочувствительного глазка (стигмы) — астаксантин — в растительном царстве не встречается. Размножение бесполое.

Особый интерес представляют колониальные жгутиковые — пандорина, эудорина и вольвокс. На их примере можно проследить историческое развитие полового процесса.

Эвглена (лат. Euglena) — род протозоа.

Имеет более 1000 описанных видов.

Эвглены — одноклеточные животные микроскопической величины (0,03—0,2 мм), встречаются как в пресных водах (по преимуществу в лужах, канавках, болотах и др. стоячих водах), так и в морях. Тело продолговатое, веретенообразное, или цилиндрическое или лентовидное, тупо срезанное на переднем и заостренное на заднем конце. Жгутик прикрепляется в углублении на переднем конце тела. Эктоплазма тонкая, у некоторых видов снабжена спирально расположенными утолщениями или полосками. Хлоропластов обыкновенно несколько (разнообразной формы) или один (лентовидный или разрезной); одно ядро; пиреноиды у немногих видов; на переднем конце тела глазок (stigma) и несколько сократительных вакуолей, открывающихся в резервуар с выводным каналом (рот и глотка по прежнему обозначению). Тело метаболично. Размножаются продольным делением; инцистируются легко.

Во́львокс (лат. Volvox) — род подвижных колониальных организмов, относящийся к отделу зелёных водораслей. Обитают в стоячих пресных водоёмах. При массовом размножении вызывают цветение воды, окрашивая её в зелёный цвет.

Размер одной колонии — до 3 мм. Колония шарообразная, включает от 200 до 10 тысяч клеток[1]. Клетки соединены протоплазматическими нитями, в центре колонии имеется полость, содержащая жидкую слизь, клетки внешнего слоя имеют по два жгутика, обращенных наружу.

В пределах колонии вольвокса наблюдается специализация клеток. Большинство клеток —- вегетативные. Между ними разбросаны генеративные клетки, принимающие участие в процессе размножения. Половой процесс — оогамия.

Объект интересен как яркий пример колониального организма среди водорослей. Исследование особенностей строения вольвокса даёт возможность сделать предположение, что развитие организмов от одноклеточных к многоклеточным происходило через колониальные формы

Трипаносомы — род паразитических одноклеточных простейших семейства трипаносомовые, которые паразитируют на различных хозяевах и вызывают многие заболевания, среди которых сонная болезнь и болезнь Шагаса. Естественным резервуаром трипаносом в основном являются млекопитающие, переносчиком — насекомые.

Род трипаносом интересен наличием механизма защиты от иммунной системы жертвы. При проникновении в организм и их обнаружении иммунной системой у трипаносом включаются гены, ответственные за синтез гликопротеинов, в результате находящиеся на поверхности мембраны гликопротеины сменяются на другие, и иммунная система не может распознать паразитов, что дает им больше времени для размножения.

Размножаются трипаносомы делением надвое, хотя есть сведения о генетическом обмене между трофозоитами.

3. Тип Споровики. Отряд гемоспоридии. Малярийный плазмодий. Цикл развития.  Малярийные плазмодии относятся к классу Plasmodium и являются возбудителями малярии. В организме человека паразитируют следующие виды плазмодиев: P. vivax — возбудитель трехдневной малярии, P. malariae — возбудитель четырехдневной малярии, P. falciparum — возбудитель тропической малярии, P. ovale — возбудитель овалемалярии, близкой к трехдневной (встречается только в Центральной Африке). Первые три вида обычны в тропических и субтропических странах. Все виды плазмодиев имеют сходные черты строения и жизненного цикла, отличие имеется лишь в отдельных деталях морфологии и некоторых особенностях цикла.

Жизненный цикл типичен для споровиков и состоит из бесполого размножения (шизогонии), полового процесса и спорогонии.

Малярия — типичное антропонозное трансмиссивное заболевание. Переносчики — комары рода Anopheles (они же и окончательные хозяева). Промежуточный хозяин — только человек.

Заражение человека происходит при укусе комара, в слюне которого содержатся плазмодии на стадии спорозоита. Они проникают в кровь, с током которой оказываются в ткани печени. Здесь происходит тканевая (преэритроцитарная) шизогония. Она соответствует инкубационному периоду болезни. В клетках печени из спорозоитов развиваются тканевые шизонты, которые увеличиваются в размерах и начинают делиться шизогонией на тысячи дочерних особей. Клетки печени при этом разрушаются, и в кровь попадают паразиты на стадии мерозоита. Они внедряются в эритроциты, в которых протекает эритроцитарная шизогония. Паразит поглощает гемоглобин клеток крови, растет и размножается шизогонией. При этом каждый плазмодий дает от 8 до 24 мерозоитов. Гемоглобин состоит из неорганической железосодержащей части (гема) и белка (глобина). Пищей паразита служит глобин. Когда пораженный эритроцит лопается, паразит выходит в кровяное русло, в плазму крови попадает гем. Свободный гем — сильнейший яд. Именно его попадание в кровь вызывает страшные приступы малярийной лихорадки. Температура тела больного поднимается так высоко, что в старину заражение малярией использовали как средство лечения сифилиса (испанской чесотки): трепонема не выдерживает таких температур. Развитие плазмодиев в эритроцитах проходит четыре стадии: кольца (трофозоита), амебовидногошизонта, фрагментации (образования морулы) и (для части паразитов) образования гаметоцитов. При разрушении эритроцита мерозоиты попадают в плазму крови, а оттуда — в новые эритроциты. Цикл эритроцитарной шизогонии повторяется много раз. Рост трофозоита в эритроците занимает время, постоянное для каждого вида плазмодиев. Приступ лихорадки приурочен к выходу паразитов в плазму крови и пов торяется каждые 3 либо 4 дня, хотя при длительно текущем заболевании чередование периодов может быть нечетким.

Из части мерозоитов в эритроцитах образуются незрелые гамонты, которые являются инвазивной стадией для комара. При укусе комаром больного человека гамонты попадают в желудок комара, где из них образуются зрелые гаметы. После оплодотворения образуется подвижная зигота (оокинета), которая проникает под эпителий желудка комара. Здесь она увеличивается в размерах, покрывается плотной оболочкой, формируется ооциста. Внутри нее происходит множественное деление, при котором образуется огромное количество спорозоитов. Затем оболочка ооцисты лопается, плазмодии с током крови проникают во все ткани комара. Больше всего их скапливается в его слюнных железах. Поэтому при укусе комара спорозоиты могут проникнуть в организм человека.

Таким образом, у человека плазмодий размножается только бесполым путем — шизогонией. Человек — это промежуточный хозяин для паразита. В организме комара протекает половой процесс — образование зиготы, образуется множество спорозоитов (идет спорогония). Комар — это окончательный хозяин, он же и переносчик.

Малярия: патогенное значение, диагностика, профилактика.

Малярия — это тяжелое заболевание, которое характеризуется периодическими изнурительными приступами лихорадки с ознобами и проливным потом. При выходе большого количества мерозоитов из эритроцитов в плазму крови выбрасываются много токсических продуктов жизнедеятельности самого паразита и продукты распада гемоглобина, которым питается плазмодий. При воздействии их на организм возникает выраженная интоксикация, что проявляется в резком приступообразном повышении температуры тела, появлении озноба, головных и мышечных болей, резкой слабости. Температура может достигать значительных отметок (40—41 °С). Эти приступы возникают остро и длятся в среднем 1,5—2 ч. Вслед за этим появляются жажда, сухость во рту, чувство жара. Через несколько часов температура снижается до нормальных цифр, все симптомы купируются, больные засыпают. В целом весь приступ продолжается от 6 до 12 ч. Имеются различия в промежутках между приступами при различных типах малярии. При трехдневной и овале-малярии приступы повторяются через каждые 48 ч. Их количество может достигать 10—15,

после чего они прекращаются, так как в организме начинают вырабатываться антитела против возбудителя. Паразиты в крови еще могут обнаруживаться, поэтому человек становится паразитоносителем и представляет опасность для окружающих.

При малярии, вызываемой P. malariae, промежутки между приступами составляют 72 ч. Часто встречается бессимптомное носительство.

При тропической малярии в начале заболевания промежутки между приступами могут быть различными, но затем повторяются каждые 24 ч. При этом виде малярии велика опасность летального исхода из-за возникновения осложнений со стороны центральной нервной системы или почек. Особенно опасна тропическая малярия для представителей европеоидной расы.

Человек может заражаться малярией не только при укусе инфицированного комара. Заражение возможно также при гемотрансфузии (переливании) зараженной донорской крови. Наиболее часто этот способ заражения встречается при четырехдневной малярии, так как при этом шизонтов в эритроцитах мало, они могут не обнаруживаться при исследовании крови доноров.

Диагностика

Возможна только в период эритроцитарной шизогонии, когда в крови можно выявить возбудителя. Плазмодий, недавно проникший в эритроцит, имеет вид кольца. Цитоплазма в нем в виде ободка окружает крупную вакуоль. Ядро смещено к краю.

Постепенно паразит растет, у него появляются ложноножки (у амебовидного шизонта).

Он занимает почти весь эритроцит. Далее происходит фрагментация шизонта: в деформированном эритроците обнаруживается множество мерозоитов, в каждом из которых содержится ядро. Кроме бесполых форм, в эритроцитах также можно найти гаметоциты. Они более крупные, не имеют ложноножек и вакуолей.

Профилактика

Выявление и лечение всех больных малярией (ликвидация источника инвазии комара) и уничтожение комаров (ликвидация переносчиков) с помощью специальных инсектицидов и мелиоративных работ (осушения болот).

При поездке в районы, неблагоприятные по малярии, следует профилактически принимать противомалярийные препараты, предохраняться от укусов комаров (использовать противомоскитные сетки, наносить отпугивающие средства на кожу).

4. Тип Инфузории. Класс ресничные инфузории: туфелька. Инфузория туфелька

Средой обитания инфузории туфельки является любой пресный водоем со стоячей водой и наличием в воде разлагающихся органических веществ. Ее можно обнаружить и в аквариуме, взяв пробы воды с илом и рассмотрев их под микроскопом.

Размеры разных видов туфелек составляют от 0,1 до 0,6 мм, парамеции хвостатой — обычно около 0,2—0,3 мм. Форма тела напоминает подошву туфли. Наружный плотный слой цитоплазмы (пелликула) включает находящие под наружной мембраной плоские мембранные цистерны (альвеолы), микротрубочки и другие элементы цитоскелета.

На поверхности клетки в основном продольными рядами расположены реснички, число которых — от 10 до 15 тыс. В основании каждой реснички находится базальное тельце, а рядом — второе, от которого ресничка не отходит. С базальными тельцами у инфузорий связана инфрацилиатура — сложная система цитоскелета. У туфельки она включает отходящие назад посткинетодесмальные фибриллы и радиально расходящиеся поперечно исчерченные филаменты. Возле основания каждой реснички имеется впячивание наружной мембраны — парасомальный мешочек.

Между ресничками расположены мелкие веретеновидные тельца — трихоцисты, которые рассматриваются как органоиды защиты. Они расположены в мембранных мешочках и состоят из тела и наконечника. Тело имеет поперечную исчерченность с периодом 7 нм. В ответ на раздражение (нагрев, столкновение с хищником) трихоцисты выстреливают — мембранный мешочек сливается с наружной мембраной, а трихоциста за тысячные доли секунды удлиняется в 8 раз. Предполагается, что трихоцисты, набухая в воде, могут затруднять движение хищника. Известны мутанты туфелек, лишенные трихоцист и вполне жизнеспособные. Всего у туфельки 5—8 тысяч трихоцист. Трихоцисты — разновидность разнообразных по строению органоидов экструсом, наличие которых характерно для инфузорий и некоторых других групп протистов.

У туфельки 2 сократительные вакуоли в передней и задней части клетки. Каждая состоит из резервуара и отходящих от него радиальных каналов. Резервуар открывается наружу порой, каналы окружены сетью тонких трубочек, по которым жидкость поступает в них из цитоплазмы. Вся система удерживается в определенном участке цитоскелетом из микротрубочек.

У туфельки имеется два разных по строению и функциям ядра — диплоидный микронуклеус (малое ядро) округлой формы и полиплоидный макронуклеус (большое ядро) бобовидной формы.

Состоит на 6,8 % из сухого вещества, из которого 58,1 % — белок, 31,7 % — жиры, 3,4 % — зола.

Функции ядер

Микронуклеус содержит полный геном, с его генов почти не считываются мРНК и, следовательно, его гены не экспрессируются. При созревании макронуклеуса происходят сложные перестройки генома, именно с генов, содержащихся в этом ядре, считываются почти все мРНК; следовательно, именно макронуклеус «управляет» синтезом всех белков в клетке. Туфелька с удаленным или разрушенным микронуклеусом может жить и размножаться бесполым путем, однако теряет способность к половому размножению. При половом размножении макронуклеус разрушается, а затем восстанавливается заново из диплоидного зачатка.

Движение

Совершая ресничками волнообразные движения, туфелька передвигается (плывёт тупым концом вперёд). Ресничка движется в одной плоскости и совершает прямой (эффективный) удар в выпрямленном состоянии, а возвратный — в изогнутом. Каждая следующая ресничка в ряду совершает удар с небольшой задержкой по сравнению с предыдущей. Плывя в толще воды, туфелька вращается вокруг продольной оси. Скорость движения — около 2 мм/c. Направление движения может меняться за счёт изгибаний тела. При столкновении с препятствием направление прямого удара меняется на противоположное, и туфелька отскакивает назад. Затем она некоторое время «раскачивается» взад-вперед, а затем снова начинает движение вперёд. При столкновении с препятствием мембрана клетки деполяризуется, и в клетку входят ионы кальция. В фазе «раскачивания» кальций выкачивается из клетки.

Питание и пищеварение

На теле инфузории имеется углубление — клеточный рот, который переходит в клеточную глотку. Около рта располагаются специализированные реснички околоротовой цилиатуры, «склеенные» в сложные структуры. Они загоняют в глотку вместе с потоком воды основную пищу инфузорий — бактерии. Инфузория находит свою добычу, чувствуя наличие химических веществ, которые выделяют скопления бактерий.

На дне глотки пища попадает в пищеварительную вакуоль. Пищеварительные вакуоли перемещаются в теле инфузории током цитоплазмы по определенному «маршруту» — сначала к заднему концу клетки, затем к переднему и затем снова к заднему. В вакуоли пища переваривается, а переваренные продукты поступают в цитоплазму и используются для жизнедеятельности инфузории. Сначала внутренняя среда в пищеварительной вакуоли становится кислой из-за слияния с ней лизосом, затем она становится более щелочной. По ходу миграции вакуоли от неё отделяются мелкие мембранные пузырьки (вероятно, тем самым увеличивается скорость всасывания переваренной пищи). Оставшиеся внутри пищеварительной вакуоли непереваренные остатки пищи выбрасываются наружу в задней части тела через особый участок поверхности клетки, лишенный развитой пелликулы —цитопиг, или порошицу. После слияния с наружной мембраной пищеварительная вакуоль тут же отделяется от неё, распадаясь на множество мелких пузырьков, которые по поверхности микротрубочек мигрируют к дну клеточной глотки, формируя там следующую вакуоль.

Дыхание, выделение, осморегуляция

Туфелька дышит всей поверхностью клетки. Она способна существовать за счёт гликолиза при низкой концентрации кислорода в воде. Продукты азотистого обмена также выводятся через поверхность клетки и частично через сократительную вакуоль.

Основная функция сократительных вакуолей осморегуляторная. Они выводят из клетки излишки воды, проникающие туда за счётосмоса. Сначала набухают приводящие каналы, затем вода из них перекачивается в резервуар. При сокращении резервуара он отделяется от приоводящих каналов, а воды выбрасывается через пору. Две вакуоли работают в противофазе, каждая при нормальных физиологических условиях сокращается один раз в 10—15 с. За час вакуоли выбрасывают из клетки объём воды, примерно равный объёму клетки.

Размножение

У туфельки есть бесполое и половое размножение (половой процесс). Бесполое размножение — поперечное деление в активном состоянии. Оно сопровождается сложными процессами регенерации. Например, одна из особей заново образует клеточный рот с околоротовой цилиатурой, каждая достраивает недостающую сократительную вакуоль, происходит размножение базальных телец и образование новых ресничек и т. п.

Половой процесс, как и у других инфузорий, происходит в форме конъюгации. Туфельки, относящиеся к разным клонам, временно «склеиваются» ротовыми сторонами, и между клетками образуется цитоплазматический мостик. Затем макронуклеусы конъюгирующих инфузорий разрушаются, а микронуклеусы делятся путем мейоза. Из образовавшихся четырех гаплоидных ядер три погибают, а оставшаяся делится митозом. В каждой инфузории теперь есть два гаплоидных пронуклеуса — один из них женский (стационарный), а другой — мужской (мигрирующий). Инфузории обмениваются мужскими пронуклеусами, а женские остаются в «своей» клетке. Затем в каждой инфузории «свой» женский и «чужой» мужской пронуклеусы сливаются, образуя диплоидное ядро — синкарион. При делении синкариона образуется два ядра. Одно из них становится диплоидным микронуклеусом, а второе превращается в полиплоидный макронуклеус. Реально этот процесс происходит сложнее и сопровождается специальными постконъюгационными делениями.