Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экз 10-13п.doc
Скачиваний:
5
Добавлен:
02.08.2019
Размер:
130.05 Кб
Скачать

11. Магнитные моменты электронов и атомов. Геомагнитное отношение. Диа и Паро магнетизм. Намагниченность. Магнитная восприимчивость вещества. Ферромагнетики и их свойства. Природа ферромагнетизма.

Различные среды при рассмотрении их магнитных свойств называют магнетиками.

Все вещества в той или иной мере взаимодействуют с магнитным полем. У некоторых материалов магнитные свойства сохраняются и в отсутствие внешнего магнитного поля. Намагничивание материалов происходит за счет токов, циркулирующих внутри атомов – вращения электронов и движения их в атоме. Поэтому намагничивание вещества следует описывать при помощи реальных атомных токов, называемых амперовскими токами.

В отсутствие внешнего магнитного поля магнитные моменты атомов вещества ориентированы обычно беспорядочно, так что создаваемые ими магнитные поля компенсируют друг друга. При наложении внешнего магнитного поля атомы стремятся сориентироваться своими магнитными моментами по направлению внешнего магнитного поля, и тогда компенсация магнитных моментов нарушается, тело приобретает магнитные свойства – намагничивается. Большинство тел намагничивается очень слабо и величина индукции магнитного поля B в таких веществах мало отличается от величины индукции магнитного поля в вакууме . Если магнитное поле слабо усиливается в веществе, то такое вещество называется парамагнетиком: если ослабевает, то это диамагнетик.

Ферромагнетиками - твёрдые вещества. Их намагничиваемость подвержена сильным изменениям под влиянием различных внешних воздействий – магнитного поля, деформации, изменения температуры. Внутреннее магнитное поле в ферромагнетиках может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией - свойством намагничиваться с различной степенью трудности в различных направлениях. Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик превращается в парамагнетик. При этом он изменяет не только свои магнитные свойства, но и физические характеристики (электропроводность, теплоемкость).

При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров: длина увеличивается – поперечное сечение уменьшается и наоборот. Это явление зависит от строения кристаллической решетки вещества и называется магнитострикцией.

С повышением напряженности внешнего магнитного поля намагниченность ферромагнетика быстро возрастает, однако при больших напряженностях она достигает насыщения, причем на наиболее крутом участке характеристики увеличение намагниченности происходит не плавно, а мелкими скачками. Это явление называют эффект Баркгаузена. Процесс намагничивания сопровождается явлением гистерезиса.

12.Вихревое электрическое поле. Ток смещения. Уравнение Максвелла для электромагнитного поля в интегральной форме.

Вихревое электрическое поле это индуцированное электрическое поле. Переменное магнитное поле порождает наведенное (индуцированное) электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникает. Следовательно, индуцированное электрическое поле не связано с зарядами, как в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля.

Ток смещения или абсорбционный ток — величина, прямо пропорциональная быстроте изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.

Введение тока смещения позволило устранить противоречие в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.

Строго говоря, ток смещения не является электрическим током, но измеряется в тех же единицах, что и электрический ток.

Уравнение Максвелла для электромагнитного поля в интегральной форме

13. эксперементальное получение электромагнитных волн. Диапозон электомагнитных волн.Дифференциальное уравнение электромагнитной волны. Поляризация. Энергия электро-магнитной волны. Вектор Умова-Пойтинга. Применение электромагнитных волн.

Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано в опытах Г. Герца в 1887 г., через восемь лет после смерти Максвелла. Для получения электромагнитных волн Герц применил прибор, состоящий из двух стержней, разделенных искровым промежутком (вибратор Герца). При определенной разности потенциалов в промежутке между ними возникала искра – высокочастотный разряд, возбуждались колебания тока и излучалась электромагнитная волна. Для приема волн Герц применил резонатор – прямоугольный контур с промежутком, на концах которого укреплены небольшие медные шарики.

Можно по­казать, что для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа (154.9):

— оператор Лапласа, v — фазовая ско­рость.

Всякая функция, удовлетворяющая уравнениям (162.1) и (162.2), описывает некоторую волну. Следовательно, электро­магнитные поля действительно могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением

где с= 1/Öe0m0, e0 и m0 — соответственно

электрическая и магнитная постоянные, e и m — соответственно электрическая и магнитная проницаемости среды.

В вакууме (при e=1 и m=1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как em> 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

Поляриза́ция волн — явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.