Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат по определениям.docx
Скачиваний:
7
Добавлен:
31.07.2019
Размер:
150.78 Кб
Скачать

Slovari.Yandex.Ru

Фотоэффе́кт — это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν < ν0, то фотоэффект уже не происходит.

wikipedia.org

ФОТОЭФФЕКТ.

Современный энциклопедический словарь:

ФОТОЭФФЕКТ, группа явлений, связанных с "освобождением" электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, - испускание электронов с поверхности твердого тела под действием света, g-излучения и др. (открыт Г. Герцем в 1887, объяснен А. Эйнштейном); 2) внутренний фотоэффект - то же, что фотопроводимость; 3) вентильный фотоэффект - возбуждение светом эдс на границе между металлом и полупроводником или между разнородными полупроводниками.

Большой энциклопедический словарь:

ФОТОЭФФЕКТ - явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают: . . 1) внешний фотоэффект - испускание электронов под действием света (фотоэлектронная эмиссия), ? -излучения и др. ; . . 2) внутренний фотоэффект - увеличение электропроводности полупроводников или диэлектриков под действием света (фотопроводимость); . . 3) вентильный фотоэффект - возбуждение светом электродвижущей силы на границе между металлом и полупроводником или между разнородными полупроводниками (см. p-n-переход). Фотоионизацию газов иногда также называют фотоэффектом.

ubrus.org

Закон обратных квадратов

Для грамотного использования искусственного света любого типа, непрерывного или импульсного (в виде отдельной вспышки или последовательности вспышек), необходимо знать закон обратных квадратов. Этот основной закон оптики применим и при съемке с коротких расстояний с помощью специального оборудования, и при работе в темной комнате Закон обратных квадратов достаточно точно устанавливает связь между расстоянием от теоретического точечного источника и относительной освещенностью Закон формулируется следующим образом относительная освещенность на любом радиальном расстоянии от точечного источника света обратно пропорциональна квадрату этого расстояния. Важное ключевое слово в этой формулировке. относительная, поскольку закон сам по себе имеет смысл, когда используется для сравнения уровней освещенности на двух различных расстояниях. Кроме того, используемые единицы измерения, например футы или метры, имеют смысл только в том случае, если сила света источника по размерности соответствует этим единицам. Практически, закон обратных квадратов означает следующее:

- при увеличении расстояния в два раза освещенность уменьшается в четыре раза,

- при увеличении расстояния в три раза освещенность уменьшается в девять раз,

- при уменьшении расстояния в два раза освещенность возрастает в четыре раза.

Закон обратных квадратов гласит, что с удвоением расстояния от точечного источника света освещенность снижается в четыре раза.

Очень немногие источники света по качеству испускаемого ими излучения приближаются к точечным, но если речь идет об экспозиции и уровнях освещенности, то таковыми можно считать перекальные фотолампы, кинопроекционные лампы, электронные импульсные лампы и другие источники с площадью излучающей или отражающей поверхностей менее 100 см2 при расстоянии до освещаемой поверхности более 1м. Закон обратных квадратов фактически означает, что небольшие изменения относительного расстояния между предметом и искусственным источником света могут привести к существенным изменениям освещенности. Согласно этому закону, для удвоения освещенности какой-либо части предмета при съемке нужно приблизить источник света на 30%. В соответствии с этим же законом, чем ближе источник света к «объемному» предмету, тем больше различий в освещенности отдельных участков последнего.

Исходя из упомянутых свойств, было бы правильно расположить мощный источник света вдалеке от «объемного» предмета, а слабый источник - значительно ближе. Аналогично, если вы стоите близко к группе людей и используете портативный источник света или электронную импульсную лампу, целесообразно расположить людей на одинаковом расстоянии от себя по несколько вогнутой линии.

Источники рассеянного света имеют свойства, отличные от свойств точечных источников, особенно в тех случаях, когда они значительно больше освещаемого предмета и расположены на близком расстоянии от него. Действие закона обратных квадратов ослабевает, освещенность предмета становится значительно более равномерной, а небольшие изменения расстояния от источника до предмета несущественно влияют на экспозицию. По этим причинам, а также благодаря равномерности освещения, отражательным свойствам и минимальному тенеобразованию в студиях часто используют большие отражатели, рассеиватели (диффузоры) и короба с источниками света. Поскольку в этих случаях закон обратных квадратов не действует, важную роль приобретает возможность управления светоотдачей. Даже при использовании сравнительно небольших источников света, подобных портативным электронным импульсным лампам, закон обратных квадратов теряет силу при очень малых расстояниях, таких, как при макрофотосъемке, поскольку рефлектор может быть значительно больше объекта съемки и располагаться очень близко.

fafa.su

Закон обратных квадратов.

В физике, закон обратных квадратов — это закон, утверждающий, что значение некоторой физической величины в данной точке пространства обратно пропорционально квадрату расстояния от источника поля, которое характеризует эта физическая величина.

Закон обратных квадратов в общем случае применим, когда линии действия некоторой силы, или энергия или другая сохраняющая полное значение величина расходится (распространяется) в радиальном направлении от источника. По мере того, как площадь сферы (которая определяется по формуле 4πr2) растёт пропорционально квадрату расстояния от источника (радиуса сферы), и как испущенное излучение удаляется всё дальше от источника, это излучение должно проходить через поверхность, площадь которой растёт пропорционально квадрату расстояния от источника. Следовательно, интенсивность излучения, проходящего через одну и ту же площадь, обратно пропорциональна квадрату расстояния от источника.

wikipedia.org

ЗАКОН ОБРАТНЫХ КВАДРАТОВ.

Для грамотного использования искусственного света любого типа, непрерывного или импульсного (в виде отдельной вспышки или последовательности вспышек), необходимо знать закон обратных квадратов. Этот основной закон оптики применим и при съемке с коротких расстояний с помощью специального оборудования, и при работе в темной комнате. Закон обратных квадратов достаточно точно устанавливает связь между расстоянием от теоретического точечного источника и относительной освещенностью.

Закон формулируется следующим образом: относительная освещенность на любом радиальном расстоянии от точечного источника света обратно пропорциональна квадрату этого расстояния.

Важное ключевое слово в этой формулировке - относительная, поскольку закон сам по себе имеет смысл, когда используется для сравнения уровней освещенности на двух различных расстояниях. Кроме того, используемые единицы измерения, например футы или метры, имеют смысл тольно в том случае, если сила света источника по размерности соответствует этим единицам.

Практически закон обратных квадратов означает следующее:

- при увеличении расстояния в два раза освещенность уменьшается в четыре раза;

- при увеличении расстояния в три раза освещенность уменьшается в девять раз;

- при уменьшении расстояния в два раза освещенность возрастает в четыре раза.

Ведущие числа

Правило использования ведущих чисел заключается в следующем: расстояние в соответствующих единицах, деленное на ведущее число, равно величине необходимой диафрагмы, или произведение выбранного значения диафрагмы и ведущего числи равно расстоянию, на котором должен быть установлен источник света.

rusimage.ru

Контраст освещения.

Контраст освещения - величина, характеризующая различие яркостей различных участков объекта съемки.

slovari.yandex.ru

Контра́ст — в сенситометрии и фотометрии — разница в характеристиках различных участков изображения, а также способность фотографического материала или оптической системы воспроизводить эту разницу.

Контра́стность (также, в различных контекстах употребляется и само слово контраст и коэффициент контраста) — степень контраста, чаще всего выражается безразмерной величиной, отношением или логарифмом отношений.

wikipedia.org

Контраст освещения

Характеризуется отношением освещенностей света и теней или мощностей рисующего и заполняющего света (если расстояния до этих источников одинаковы).

miltex.ru

Я́ркость — это поток, посылаемый в данном направлении единицей видимой поверхности в единичном телесном угле. Отношение силы света, излучаемого поверхностью, к площади её проекции на плоскость, перпендикулярную оси наблюдения. Или — характеристика светящихся тел, равная отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. В системе СИ измеряется в канделах на м².

wikipedia.org

ЯРКОСТЬ

Современный энциклопедический словарь:

ЯРКОСТЬ, отношение силы света, распространяющегося в каком-либо направлении, к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Измеряется в канделах на м2. Яркость источника, соответствующего порогу чувствительности человеческого глаза, ~10-7 кд/м2; поверхности Луны ~2, 5? 103 кд/м2; источника, слепящего глаз, ~105 кд/м2, Солнца ~1, 5? 109 кд/м2; лазера ~1012 кд/м2.

Большой энциклопедический словарь:

ЯРКОСТЬ - характеристика светящихся тел, равная отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. В системе СИ измеряется в канделах на м2.

Толковый словарь русского языка Д.Н.Ушакова:

ЯРКОСТЬ, яркости, мн. нет, ж. 1. Отвлеч. сущ. к яркий. Яркость света. Яркость красок. Яркость таланта. 2. Количество световой энергии, испускаемой источником света (физ. , астр. ). Звезды первой яркости.

ubrus.org

Яркость

Я́РКОСТЬ (от ярый; др.-русск. яръ; греч. austeros — "острый, едкий, жгучий"; праслав. jarъ — "огненный, ярый, неистовый"; сравн. Ярила) — качество цветового, или хроматического, тона, которое определяется соединением насыщенности и светлоты. Определяется способностью поверхности отражать падающие на нее лучи света (греч. lampotes — "блеск, сияние"; см. отблеск). Так, например, темные тона — синий, фиолетовый — имеют зрительную глубину и, следовательно, обладают значительной насыщенностью; светлые — желтые, оранжевые, напротив обладают меньшей глубиной и насыщенностью, но большей яркостью. Эти примеры показывают не только взаимосвязь яркости, насыщенности и светлоты, но и зависимость этих качеств от тепло-холодных отношений тонов. Теплым и даже горячим тонам присуща наибольшая яркость, холодным — меньшая. Термин "яркость" используют и иносказательно. Например: яркость образа (имеется в виду сила выражения и воздействия на зрителя). Такая яркость зависит от потенции создателя (см. психология искусства).

slovari.yandex.ru

Светочувствительность.

1) способность фотографического материала образовывать изображение в результате действия света и последующего проявления.

2) Величина, количественно характеризующая указанную способность и служащая для нахождения правильных условий экспонирования при фотографической съёмке. В галогеносеребряных желатиновых слоях (см. Фотографическая эмульсия), наиболее распространённых в фотографии, природа С. и её уровень определяются: а) характером поглощения света в кристаллической решётке галогенида серебра и в слое сенсибилизирующего красителя, адсорбированном галогенидом серебра; б) фотоэффектом в решётке галогенида серебра, определяющим фотохимическую эффективность поглощения света; в) наличием в решётке свободно движущихся межрешёточных ионов серебра, служащих материалом для образования центров скрытого фотографического изображения; г) наличием на поверхности микрокристаллов фотографической эмульсии т. н. центров С. — примесных центров (Ag2S, Ag), которые возникают при химическом взаимодействии галогенида серебра с активными компонентами желатина при изготовлении эмульсии (на этих центрах или около них под действием света образуются центры скрытого фотографического изображения); д) степенью избирательности проявления фотографического. Сам галогенид серебра чувствителен к свету с длиной волны l не более 500 нм (сине-фиолетовая область видимого спектра) и почти не реагирует на жёлтое, зелёное, красное и инфракрасное излучение. Эта С. галогенида серебра называется собственной. С. к свету с l>500 нм обеспечивается добавлением в фотоэмульсию специальных красителей и носит название добавочной, или сенсибилизированной, С. Подобным образом расширяют спектральную область С. практически у всех современных фотоматериалов (см. Сенсибилизация оптическая).

Количественной характеристикой С. является величина S, обратная экспозиции Н, создающей на фотографическом материале (после его проявления или иной химико-фотографической обработки) заданный фотографический эффект, чаще всего определённую оптическую плотность почернения D. Т. о., S = k/H (значения Н берутся при D = const). О С. как величине подробнее см. статью Сенситометрия.

Лит.: Чибисов К. В., Основные проблемы химии фотографических эмульсий, М., 1962; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.

slovari.yandex.ru

Светочувствительность фотоматериала:

способность фотографического материала образовывать изображение под действием электромагнитного излучения, в частности света.

числовая величина, количественно характеризующая эту способность.

Используется для определения правильной экспозиции.

Важным условием определения светочувствительности является стандартизация условий экспонирования и обработки фотоматериала.

Применяется также и в цифровой фотографии, причём шкалы числовых значений — общие для цифровой и плёночной фотографии. Отличия только в выбранном критерии.

Измеряется в относительных единицах: DIN, ISO, ГОСТ и др.

wikipedia.org

Светочувствительность

Светочувствительность измеряется в единицах ISO (International Standards Organization - Международная организация стандартов) или ASA (American Standards Association - Американская ассоциация стандартов). Количество единиц ISO является характеристикой пленки или матрицы и описывает, насколько они чувствительны к свету. Чем выше это число, тем больше светочувствительность пленки. Если значение в единицах ISO пленки А в два раза меньше, чем пленки Б, значит, пленка типа Б вдвое светочувствительнее пленки А. Пленки, как правило, обладают чувствительностью от ISO 50 до ISO 400 (позитивные пленки обычно менее светочувствительные по сравнению с негативными). В цифровых камерах, где чувствительность является свойством матрицы, можно встретить довольно высокие значения, например ISO 1600, Высокочувствительные пленки имеют один недостаток: растет зернистость изображения, которая проявляется в виде укрупнения точек растра. Этот эффект может создавать текстуру и влиять на четкость изображения. Поэтому одно из основных правил фотографов гласит, что следует использовать пленку с минимальной светочувствительностью, допускаемую освещением.

На улице в солнечный день вполне достаточно пленки с ISO 100, а в* помещении, к сожалению, придется снимать на пленку с ISO 400, поскольку она более восприимчива к свету. Одним из преимуществ цифровой фотографии является возможность изменения светочувствительности матрицы. Обычно цифровые камеры настроены на оптимальное значение, которое определяется производителем, и при такой настройке получаются наилучшие результаты. Но это значение можно изменить. Конечно, как и в случае с пленкой, цифровые фотографии "страдают" от сильного увеличения светочувствительности. Если установить светочувствительность выше оптимальной, появится шум в виде синих и красных черточек; он обычно наиболее заметен в темных областях изображения.

Мы не говорим, что на фотографиях, которые сняты камерой, созданной для оптимальной работы при чувствительности ISO 400, шум будет выше, чем на изображениях с камеры, "правильная" светочувствительность которой равна ISO 100. Но можно убедиться, что если чувствительность камеры, оптимальное значение которой составляет ISO 100, изменится до ISO 400, на фотографиях будет больше шума, чем если бы они снимались камерой, у которой ISO 400 является оптимальным значением. Поэтому если необходимо осуществить съемку при слабом освещении, прежде всего попробуйте увеличить количество источников света цифровыми камерами сложно сравнивать с чувствительностью пленочных фотоаппаратов; для получения хорошего изображения с их помощью обычно требуется больше источников света, чем при съемке традиционным фотоаппаратом.

Поэтому всегда нужно предполагать, что понадобятся дополнительные источники света. К некоторым камерам, таким как Olympus DL620, можно подключать вторую вспышку. Вернемся к экспозиционным числам. Предположим, что исходное оптимальное значение светочувствительности равнялось ISO 100.

Если изменить настройку матрицы, подняв чувствительность до ISO 400, или воспользоваться камерой с такой оптимальной чувствительностью, верхний и нижний параметры разойдутся в противоположных направлениях (одно значение соответствует изменению чувствительности с ISO 100 до ISO 200, второе - с ISO 200 до ISO 400). Теперь, сохранив величину диафрагмы, можно сократить выдержку или уменьшить диафрагму, не меняя выдержку.

Наличие системы, позволяющей изменять экспозицию по своему усмотрению, а также фокусировать объектив на любом объекте, дает больше возможностей для творчества. У вас есть камера, вы "создаете" снимки и в состоянии управлять этим процессом.

Прежде всего, такая система позволяет регулировать выдержку. Уменьшив ее, можно сфотографировать движущийся объект, и он получится резким. При увеличении времени экспозиции снимки будут немного размытыми. (Но если требуется показать, что автомобиль движется, проще всего допустить небольшую расплывчатость.) Кроме того, увеличение выдержки позволяет увеличить диафрагменное число, то есть уменьшить диафрагму.