Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 3.doc
Скачиваний:
6
Добавлен:
18.07.2019
Размер:
354.82 Кб
Скачать

Содержание курса

 

Глава 3. Солнце

3.1. Радиоизлучение спокойного Солнца

3.2. Корональные конденсации

3.3. Спорадическое радиоизлучение Солнца

3.1. Радиоизлучение спокойного Солнца

Основной механизм радиоизлучения спокойного Солнца – тормозное излучение полностью ионизованного газа солнечной короны и хромосферы.

Излучение фотосферы в радиодиапазоне недоступно для наблюдений из-за сильного поглощения в хромосфере. Оптическая глубина хромосферы по тормозному поглощению равна 780 и 3×107 для излучения с длиной волны 1 см и 1.50 м соответственно. Лишь в субмиллиметровой области (l~100 мкм) хромосфера становится прозрачной.

Граница между хромосферой и короной находится на расстоянии от центра Солнца, что соответствует высоте 28000 км над поверхностью фотосферы. В то же время оптическая глубина короны равна единице на волне 120 см. Таким образом, на метровых и более длинных волнах наблюдается только радиоизлучение короны, а на дециметровых и более коротких появляется вклад хромосферы. По этой причине угловой размер источника радиоизлучения, связанного с Солнцем, на метровых и дециметровых волнах значительно больше видимого диска.

Магнитное поле в короне не превышает одного Гаусса. Следовательно, электронная гирочастота значительно меньше частоты излучения в любом диапазоне наблюдаемого спектра, поэтому двулучепреломление и разница между обыкновенной и необыкновенной волнами не существенны.

Температура короны Ткор в среднем порядка нескольких миллиона градусов. В хромосфере наблюдается сильный градиент температуры: от 7000 K до 20000 K, в среднем — 104 K. Можно представить в простейшем варианте радиоизлучение короны двухслойной моделью, в соответствии с решением уравнения переноса (1.9). В этой модели яркостная температура в направлении центра видимого диска Солнца складывается из ослабленного короной излучения хромосферы с температурой Tхром (оно рассматривается как фоновое излучение) и из излучения короны с учетом самопоглощения:

(3.1)

Оптическая глубина короны кор в направлении на центр солнечного диска определяется интегралом

(3.2)

Мера эмиссии солнечной короны в направлении на центр диска составляет около 3×1026 см–5. Распределение электронной концентрации по высоте в короне можно представить формулой

N (r) = 108 (1.5 r–6 + 3 r–16) см–3, (3.3)

 

где r выражено в радиусах Солнца. Эта формула связывает шкалу высот в солнечной короне с нелинейной шкалой электронных концентраций. Для коротких волн

 

Tb = Tхром + Tкоркор.

 

На волнах, где корона практически прозрачна (кор < 1), имеется поярчение к краю (а не потемнение, как в оптическом диапазоне) – правда, не на самом краю, а ближе к центру (тем ближе, чем больше длина волны); это объясняется неизотермичностью короны. На длинах волн свыше ~1.2 м, где оптическая глубина короны больше единицы, все радиоизлучение уже определяется только короной. Отсутствие заметного вклада от более холодной хромосферы приводит к тому, что нет усиления яркости к краю. Радиоизофоты короны имеют несколько эллиптическую форму, что является следствием несферичности короны.

 

Н

а рис. 3.1 даны распределения яркостной температуры солнечной короны для разных длин волн. Очевиден эффект снижения яркостной температуры с ростом .

Рефракция радиоволн в короне. Для каждой частоты существует критическое значение электронной концентрации Nкр, при котором коэффициент преломления корональной плазмы равен нулю. Значение Nкр соответствует некоторому уровню в короне , определяемому зависимостью (3.3). Этот уровень является как бы зеркалом для радиоволн, из-под него радиоизлучение выйти к наблюдателю не может. С другой стороны, в короне существует уровень, до которого на луче зрения наблюдателя оптическая глубина короны по тормозному поглощению (3.2) равна единице, согласно (3.3), ему соответствует некоторое значение электронной концентрации N=1. При преобладании тормозного механизма основная часть излучения поступает именно из области вблизи уровня с N = N=1. Важно, который из двух выделенных уровней – N=1 или Nкр – расположен в короне выше. В таблице 2 приведены значения N (см–3), соответствующие Nкр и N=1. Таким образом, для излучения с длиной волны к

Таблица 2

Электронные концентрации,

соответствующие в солнечной короне

для разных длин волн

уровням  = p и  = 1

 

Nкр

N=1

1 см

1013

1010

50 см

5×109

109

3.5 м

108

108

8 м

1.8×107

3.6×107

 

ороче 50 см уровень N=1 расположен в короне выше, чем уровень Nкр, и все радиоизлучение короны определяется только свободно-свободными переходами. Однако на длине волны  > 50 см ситуация обратная, уровень Nкр ("плазменное зеркало") расположен выше, чем уровень N=1. Это приводит к сдвигу вверх нижнего предела интегрирования в (3.2). Оптическая глубина обрезается, что приводит к уменьшению яркостной температуры. Еще одна причина снижения Tb – уровень Nкр отсекает от наблюдателя внутренние, более горячие слои короны, и наблюдаемое излучение идет из внешних слоев короны, где температура ниже.

Все сказанное относится к направлению на центр видимого диска Солнца. Для направлений вблизи лимба картина усложняется. Вследствие зависимости показателя преломления от высоты, траектории лучей, идущих в стороне от центрального направления, искривляются, как показано на рис. 3.2. Для наблюдателя происходит сдвиг излучающей области относительно ее истинного положения. Для излучения с длиной волн порядка нескольких метров величина сдвига составляет около 15‑20% от видимого размера солнечного диска. Вне центральной оси рефракция снова приводит к тому, что на метровых волнах мы видим большей частью внешние, более холодные слои короны, и эффективная яркостная температура короны снижается.

Д

 

Рис. 3.2. Траектория луча в короне Солнца.

ля нецентрального направления интегрирование ведется вдоль луча (см. рис. 3.2):

, (3.4)

где элемент длины ds равен

.

Если показатель преломления не меняется вдоль луча, то оптическая глубина определяется только зависимостью коэффициента поглощения от расстояния до центра Солнца:

(3.5)

С учетом рефракции в короне (n зависит от r¢) необходимо отличать оптический путь от геометрического, и формула (3.5) изменится так:

(3.6)

Формула (3.6) автоматически учитывает отклонение луча от прямой линии, так как интегрирование ведется вдоль искривленной траектории.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]