Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Виды спектров.docx
Скачиваний:
14
Добавлен:
15.07.2019
Размер:
40.91 Кб
Скачать

Виды спектров.

Спектральный состав излучения различных веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные спектры.

Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. Спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум мри определенной частоте. Энергия излучения, приходящаяся на очень малые и очень большие частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.

Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень

узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры.

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Важно знать, из чего состоят окружающие нас тела. Изобретено много

способов определения их состава. Но состав звезд и галактик можно узнать только с помощью спектрального анализа.

Спектральный анализ и его применение

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность "заглянуть" внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется возможность определить химический состав тела. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает Ю'10. Это очень чувствительный метод.

Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных линий зависит не только от массы вещества, но и от способа возбуждения свечения. Так, при низких температурах многие спектральные линии вообще не появляются. Однако при соблюдении стандартных условий возбуждения свечения можно проводить и количественный спектральный анализ.

В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спектра. Рубидий дает темно-красные, рубиновые линии. Слово цезий означает «небесно-голубой».

Это цвет основных линий спектра цезия.

Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще невозможны. Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце и лишь затем нашли в атмосфере Земли. Название этого элемента напоминает об

их легко можно отличить от Фраунгоферовых линий, хотя по существу и те и другие представляют собой следы лучей, задержанных растворами пигментов или накаленными парами или газами. Фраунгоферовы линии были открыты немецким ученым Фраунгофером в 1802 г. Они играют большую роль в целях ориентировки. Благодаря им весь спектр разделяется на -определенные участки, а это способствует определению места нахождения исследуемых полос или-линий. Определение длины волн, соответствующих разным цветным лучам, Фраунгофер произвел при помощи диффракционной решотки, и поэтому, наблюдая солнечный спектр по Фраунгоферовым линиям, можно определять не только место расположения полосы, но и самые длины 'волн, выраженные в тц. С. а. был открыт в 1859 году Кирхгофом (Kirchhoi), и с тех пор область его применения все время расширяется. В последнее время ов стал находить себе применение в клин, лабораториях для исследования гл. обр. крови и мочи с диагностическими целями. Растворы кровяного пигмента—гемоглобина (НЬ)—способны поглощать нек-рые лучи, входящие! в состав белого солнечного луча, и поэтому при рассматривании в спектроскоп такого солнечного луча, прошедшего через раствор НЬ, мы будем наблюдать т. н. адсорпционный спектр, или спектр поглощения НЬ, т. е. наряду с узкими Фраунгоферовыми линиями мы будем видеть довольно широкие темные полоски в разных участках спектра шириной в 10—30 т/«, Для каждого пигмента имеются свои полосы поглощения и по этим полосам, по месту расположения их можно судить о наличии того или другого пигмента. Так напр, находящийся в нормальной крови здорового человека оксиге-моглобин дает спектр с 2 полосами поглощения I Я= 589—577 тц и IIЯ =556—536 тр. Чтобы получить этот спектр, необходимо кровь развести по крайней мере в 200 раз. При меньшем разведении обе полосы могут сливаться и давать одну сплошную полосу поглощения. Несомненно, при этом играет роль также ширина сосуда, в к-ром находится раствор крови. При прибавлении к этому раствору 1—2 капель зернистого аммония [(NH4)2S] картина изменится: получается спектр восстановленного, редуцированного НЬ с одной широкой полосой А =596—543 т/г. При отравлении окисью углерода в крови появляется пигмент карбоксигемоглобин, характеризующийся спектром с 2 полосами поглощения, сдвинутыми несколько в сторону фиолетового конца спектра, если сравнить его со спектром оксигемоглобина. Длина волн поглощенных лучей I А =579—564 и II А =548—530 т/г. При восстановлении сернистым аммонием этого раствора картина не должна изменяться в случае, если количество карбоксигемогло-бииа составляет 15 — 20% по Цимке (Ziemke) и 10% по Шумму (Schumm).—В случае отравления анилином в крови появляется пигмент метгемоглобин, дающий опять характерный спектр. Но чтобы его обнаружить, необходимо наблюдение производить на более густом растворе крови, примерно 0,1 смЗ крови в 0,5 смЗ Н20. При таком разведении в спектре появится характерная для метгемоглобина полоса поглощения в красном участке спектра с А =630—620

m/i. При разбавлении водой в желто-зеленом и зеленом участках спектра появятся еще 2 полосы, совпадающие с полосами оксигемоглобина, и наконец 4-я полоса, характерная для метгемоглобина, лежит между 518—486 m/i. Эта полоса мало заметная, а поэтому присутствие метгемоглобина в крови может быть установлено уже, как было сказано, по наличию полосы в "красном участке спектра.— При отравлении мышьяковистым водородом, а также и при других заболеваниях в крови могут произойти гемолиз кровяных шариков и в связи с гемолизом распад пигмента на гло-*бин и гемохромоген; но т. к. в плазме крови имеется большой избыток 02, то гемохромоген находится в состоянии окисления—в виде ге-матина, и при рассматривании этого пигмента в спектроскоп мы обнаружим полосу в красном *свете с А =640—630 т/г. В области желто-зеленого и зеленого цветов будут находиться также полосы поглощения, но характерной является полоса в красном свете. При прибавлении (NH4)2S гематин восстанавливается и превращается в гемохромоген с двумя полосами поглощения I А=565—554 и ИА=536—523 т/л. В случае, если полоса в красном свете обусловлена наличием метгемоглобина, то при восстановлении (NH4)2S получится спектр НЬ с 1 широкой полоской А =596—543 т/г, а не гемохро-могена с 2 полосами. Из пигментов, легко распознаваемых в спектроскопе, надо упомянуть еще об уробилине и порфирине. Последний встречается в незначительных количествах и в моче здоровых людей, но при нек-рых заболеваниях количество этого пигмента может быть значительно увеличено. Порфирин характеризуется спектром с полосами I А =597—587 т/г,

II А— тень около576—565 и III Я = 557 — 541 т/г. Получить его можно из мочи при свинцовом отравлении по методу Геррода, осадив из 200 смЗ мочи 40 смЗ 10%-ного NaOH (порфирин увлекается осаждающимися фосфатами). Промытый осадок растворяется затем в 0,5—1,0 смЗ 25%-ной НС1, и спектр поглощения рассматривается в спектроскоп. При отравлении сульфоналом, при врожденной порфиринурии в моче появляется порфирин, по спектру весьма похожий, но по хим. свойствам отличный от порфирина,—т. н. уропорфирин. Уробилин, встречающийся в моче при нек-рых заболеваниях, характеризуется спектром с широкой полосой поглощения А = 510 — 490 т/г. Для подобного анализа весьма удобным является карманный спектроскоп (см. Спектроскопия, спектроскоп). К. Лавровский. Спектральный анализ

биологический—чрезвычайно интересный и важный новый метод исследования тонкого метаболизма тканей и клеток, идущий- без нарушения их структуры. Применение биол. С. а. стало возможным благодаря открытию митогенетических лучей (см.). Удалось установить, что различные химические процессы, лежащие в основе возникновения этих лучей, качественно отличаются один от другого набором присущих им длин волн (линий). Так. обр. для каждого хим. источника излучения имеется свой характерный спектр. Исследуя источник митогенетического излучения, в настоящее время необходимо знать его спектр. Сравнивая полученную картину с уже

изученными шаблонами главных источников излучения (гликолиз, протеолиз, расщепление фосфорной кислоты и т. д.), удается в каждом конкретном случае выяснить характер процессов, лежащих в основе данного излучения. Сложные физиол. источники излучения оказались содержащими по существу целый набор простых хим. процессов—гликолитических, протеолитических и т. д. В дальнейшем выяснилось, что колебания спектральных картин чрезвычайно тонки и позволяют делать выводы, значение к-рых выходит далеко за пределы проблемы митогенеза, представляя существенное значение для физиологии, химии и др. дисциплин. Так, методом С. а. были установлены тонкие различия химизма нервного возбуждения , вызванного различными раздражителями— термическим, механическим и т. д.; совершенно своеобразный спектр получается в случае физиол. возбуждения. Спектрально отличается характер метаболизма в месте раздражения от места проведения и т. д. Нек-рые данные С. а. представляют интерес при решении ряда вопросов биологической и общей химии. Особый интерес представляет то обстоятельство, что т. н. вторичное излучениеХсм. Митогене-тические лучи) является резонантным, т. е. отвечает спектрально на спектр первичного облучения; очень важно отметить, что при монохроматическом воздействии достаточно одной линии данного спектра, чтобы вызвать вторично весь спектр в целом. Это явление, к изучению к-рого только сейчас приступают, представляет высокий теоретический интерес. Сама техника эксперимента чрезвычайно проста и сводится к тому, что исследуемый источник излучения располагается перед входной щелью кварцевого спектрографа, в выходной плоскости к-рого на местах, соответствующих различным длинам волн и отмечаемых особой шкалой, располагается детектор излучения—жидкая или твердая дрожжевая культура. По наличию или отсутствию эффекта в том или ином детекторе можно судить о присутствии различных линий спектра. Путем сличения с простейшими в хим. отношении источниками выясняется содержание данного спектра.

СПЕКТРОСКОПИЯ, СПЕКТРОСКОП. Спектроскопия — наблюдение спектра. Спектром называется цветная полоска (радуга), получаемая на экране при прохождении света через призму или через частую решотку, дифракционную оптическую сетку. Причина возникновения такой полоски (радуги) заключается в физ. свойствах белого солнечного луча при прохождении через призму расщепляться на составные лучи. Белый луч, как показал еще Ньютон в 1666 г.,—смешанный луч. Он состоит из лучей, окрашенных в различные цвета радуги и обладающих различными углами преломления при прохождении через стеклянную призму в связи с различной длиной их волны. Лучи с наименьшей длиной волны—фиолетовые—обладают наиболее сильным преломлением. Поэтому они будут располагаться в спектре в сторону к основанию призмы, тогда как лучи с наибольшей длиной волны—красные, обладающие менее сильным преломлением, упадут в сторону,

обращенную к вершине призмы. В промежутке между красными и фиолетовыми будут располагаться лучи, окрашенные в другие цвета, соответственно их преломлению, и полный сплошной спектр т. о. будет представлять ряд цветных полос, постепенно переходящих друг в друга в такой последовательности: фиолетовые, синие, голубые, зеленые, желтые, оранжевые и красные. Но это только видимая часть спектра, охватывающая лучи с длиной волны в пределах между 400 m/j, и 760 т/л,. По одну сторону видимого спектра располагаются лучи инфракрасные, обладающие большей длиной волны,—тепловые, по другую—ультрафиолетовые, обладающие меньшей длиной волны,— химические. Призмы из обыкновенного стёкла в значительной степени задерживают ультрафиолетовые лучи, призмы же из горного хрусталя или из исландского шпата пропускают их. Спектры, получаемые в результате разложения светового луча призмой, различаются между собой. Так, бывают спектры: сплошной, или непрерывный, когда цветная полоска представляет постепенный переход от одного цвета к другому (спектры твердых, накаленных до белого каления тел), линейчатый,или прерывный, когда вместо полоски мы имеем целый ряд линий, окрашенных в различные цвета (спектры светящихся паров или газов, напр. Не, Н, Hg), и спектр полосатый, состоящий из массы нерезких линий (наблюдается при свечении паров и хим. соединений). Общее их название—спектры испускания, излучения, или эмиссии. Если на пути лучей света, дающего сплошной спектр, поместить раствор веществ, способных поглощать какие-нибудь лучи, то на фоне сплошного спектра получаются темные полосы или отдельные линии соответственно тем длинам волн, к-рые данным промежуточным телом поглощаются. Спектр, наблюдаемый при этом, называется спектром поглощения, или абсорпцион-ным. Примером последнего служат: солнечный спектр, спектры кровяных пигментов—НЬ и его производных и др. Для наблюдения спектров имеется несколько приборов, к-рые называются спектроскопами. Спектроскопы бывают разных систем. Так, спектроскоп системы Кирхгофа и Бунзена состоит из трех труб, почему и называется трехтрубным. 1 -я труба—коллиматор, призма, 2-я зрительная труба Сс и 3-я труба с масштабом для измерений относительного расстояния

спектральных линий. Коллиматор в свою очередь состоит из узкой прямолинейной щели, расположенной в фокусе ахроматического собирательного стекла, так что луч света, прошедший через щель и упавший на собирательное стекло, после прохождения через него превращается в пучок параллельных лучей и в таком виде будет падать на призму спектроскопа. Призма—главная составная часть всякого призматического спектроскопа: белый луч благодаря ей разделяется на свои составные части в силу различных углов преломления этих лучей. В спектроскопах диффракционнкх разложение белого луча на цветную полоску осуществляется при помощи диффракционной решотки, находящейся в том же месте, где и призматическая призма. Спектры, получаемые от призмы и от решотки, различаются между собой. В то время как

спектр от призмы уплотнен в красной и желтой областях и сильно рассеян в областях голубых, синих и фиолетовых лучей, спектр диффракционный представляет картину более равномерного распределения лучей по длине всего спектра. Зрительная труба или окуляр содержит двояковыпуклое стекло и имеет своим назначением увеличивать размеры спектра. 3-я труба заключает в себе полупрозрачную линейку, на к-рой нанесены деления, выражающие длины световых волн в миллимикронах (т//). Эта линейка может передвигаться при помощи микрометрического винта. Передвижение линейки необходимо, прежде чем будут производиться наблюдения спектров, т. к. необходимо эту линейку правильно ориентировать по отношению к спектру, т. е. чтобы деление с цифрой 589 приходилось или правильнее совпадало с Фраунго-феровой линией В в желтом свете (см. Спектральный анализ). Прямой спектроскоп (a vision directe, Амичи призма), выпущенный Цейсом или Рейхертом (см. рисунок), р* называется так потому, что спектр наблюдается по прямому направлению. Это достигается тем, что одна призма обыкновенного спектроскопа заменена комбинацией из 5 призм, сложенных вместе таким образом, что основания у них обращены в противоположные стороны. Впереди призм у карманного спектроскопа С

Для чного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т. е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.

Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом - собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран - матовое стекло или фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.

Описанный прибор называется спектрографом. Если вместо второй линзы

и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом. Призмы и другие детали спектральных аппаратов необязательно изготовляются из стекла. Вместо стекла применяются и такие прозрачные материалы, как кварц, каменная соль и др.

Вы познакомились с новой величиной - спектральной плотностью интенсивности излучения. Узнали, что находится внутри кожуха спектрального аппарата.

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.