Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика экзамен.docx
Скачиваний:
5
Добавлен:
30.04.2019
Размер:
249.15 Кб
Скачать

8. Применение теории вероятности к статистике.

   Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными явлениями. Таким образом, обработка результатов измерения (cм. § 7) является одной из задач математической статистики. В этом параграфе мы рассмотрим еще две задачи математической статистики.

1. Определение неизвестной функции распределения.

   Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Разобьем диапазон наблюдаемых значений на интервалы ] X0, X1 [, ] X1, X2 [, ..., ] Xk-1, Xk [ одинаковой длины . Пусть mi - число наблюдаемых значений , попавших в i-й интервал. Разделив mi на общее число наблюдений n, получим частоту , соответствующую i-му интервалу: , причем . Составим следующую таблицу:

Номер интервала

Интервал

mi

1

] X0, X1 [

m1

2

] X1, X2 [

m2

...

...

...

...

k

] Xk-1, Xk [

mk

которая называется статистическим рядом. Эмпирической (или статистической) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x:

   На практике достаточно найти значения статистической функции распределения F*(x) в точках X0, X1, ..., Xk, которые являются границами интервалов статистического ряда:

(65)

   Cледует заметить, что F*(x)=0 при x<X0 и F*(x)=1 при x>Xk. Построив точки Mi [Xi ; F*(Xi)] и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 15). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе n испытаний с вероятностью, близкой к единице, эмпирическая функция распределения F*(x) отличается сколь угодно мало от неизвестной нам функции распределения F(x) cлучайной величины

   Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы ] X0, X1 [, ] X1, X2 [, ..., ] Xk-1, Xk [. На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота hi этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.    Рассмотрим функцию , которая в интервале ] Xi-1, Xi [ постоянна и равна hi. График этой функции называется гистограммой. Он представляет собой ступенчатую линию (рис. 16). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших n с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Пример. Измерен диаметр у 270 валов хвостовика. Значения диаметра (в см) оказались в диапазоне 66-90 см. Разбив этот диапазон на интервалы диной 2 см ( =2), получим статистический ряд (см. таблицу)