Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры_теория_вероятности.doc
Скачиваний:
12
Добавлен:
26.04.2019
Размер:
857.6 Кб
Скачать
  1. Дисперсія та середньоквадратичне відхилення.

Математичне сподівання називають центром розсіювання. Для вимірювання розсіювання вводиться числова характеристика, яку називають дисперсією.

Для визначення дисперсії розглядається відхилення випадкової величини Х від свого математичного сподівання (Х – М (Х))

Дисперсією випадкової величини Х називається математичне сподівання квадрата відхилення цієї величини

.

Для дискретної випадкової величини Х дисперсія

;

для неперервної

.

Якщо Х  [а; b],

то .

Якщо випадкова величина виміряна в деяких одиницях, то дисперсія вимірюватиметься в цих самих одиницях, але в квадраті.

Тому доцільно мати числову характеристику такої самої вимірності, як і випадкова величина. Такою числовою характеристикою є середнє квадратичне відхилення.

Середнім квадратичним відхиленням випадкової величини Х називають корінь квадратний із дисперсії:

.

_________________________________

  1. Властивості дисперсії.

1. Якщо С — стала величина, то

.

Справді

.

2. . (2)

Маємо:

3. Якщо А і В — сталі величини, то

.

Адже

Дисперсію можна обчислити і за такою формулою:

Для дискретної випадкової величини Х

;

для неперервної

Дисперсія не може бути від’ємною величиною .

Дисперсія характеризує розсіювання випадкової величини відносно свого математичного сподівання.

_________________________________

  1. Початкові та центральні моменти.

Початковим моментом k-го порядку випадкової величини Х називають математичне сподівання величини Х k:

.

Для дискретної випадкової величини Х

;

для неперервної

.

Центральним моментом k-го порядку називається математичне сподівання від (Х – М(Х))k:

(5)

Для дискретної випадкової величини

для неперервної

.

_________________________________

  1. Асиметрія та ексцес.

Третій центральний момент характеризує асиметрію закону розподілу випадкової величини. Якщо 3 = 0, то випадкова величина Х симетрично розподілена відносно М(Х). Оскільки 3 має розмірність випадкової величини в кубі, то вводять безрозмірну величину — коефіцієнт асиметрії:

.

Центральний момент четвертого порядку використовується для визначення ексцесу, що характеризує плосковершинність, або гостровершинність щільності ймовірності f (x). Ексцес обчислюється за формулою

_________________________________

  1. Система двох дискретних випадкових величин.

На одному й тому самому просторі елементарних подій  можна визначити не одну, а кілька випадкових величин. Така потреба постає, наприклад, коли досліджуваний об’єкт характеризується кількома випадковими параметрами.

Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин. Якщо тобто розглядається система двох випадкових величин , то геометрично її можна тлумачити як випадкову точку з координатами на площині або як випадковий вектор, складові якого — випадкові величини

Одночасна поява внаслідок проведення експерименту n випадкових величин (X1, X2, …, Xn) з певною ймовірністю являє собою n-вимірну випадкову величину, яку називають також системою n випадкових величин, або n-вимірним випадковим вектором.

_________________________________

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]