Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tema3.doc
Скачиваний:
13
Добавлен:
23.04.2019
Размер:
1.55 Mб
Скачать

Задача №2.

Условие задачи №2 несколько различается в зависимости от номера варианта контрольной работы. Приведем решения простейших задач, входящих в это задание.

1) Составить уравнение плоскости, проходящей через точки , , .

Решение.

Уравнение плоскости, проходящей через точки , , имеет вид:

(3.7)

Тогда уравнение плоскости в силу уравнения (3.7) имеет вид или .

Запишем полученное уравнение в общем виде, т.е. в виде . Для этого раскроем определитель по первой строке . После преобразований получим: .

2) Найти нормальный вектор плоскости .

Решение.

Нормальный вектор - это вектор, перпендикулярный плоскости. Если плоскость задана общим уравнением , то нормальный вектор имеет координаты .

Рис. 3

Для плоскости нормальным является вектор = .

Отметим, что любой вектор, коллинеарный вектору = так же является нормальным вектором плоскости . Таким образом, при каждом ненулевом вектор с координатами будет являться нормальным вектором рассматриваемой плоскости.

3) Найти косинус угла между плоскостями и .

Решение.

Угол между двумя плоскостями и представляет собой угол между их нормальными векторами и определяется равенством

Для плоскости координаты нормального вектора определяются равенствами , , . Для плоскости - равенствами , , . Следовательно, = .

4) Составить уравнение плоскости , проходящей через точку параллельно плоскости : .

Решение.

Уравнение плоскости, проходящей через точку , имеет вид

(3.8)

Подставим в уравнение (3.8) координаты точки : .

Условие параллельности плоскостей и имеет вид

(3.9)

Так как плоскости и параллельны, то в качестве нормального вектора плоскости можно взять нормальный вектор плоскости , т.е. в формуле (3.9) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

5) Найти расстояние от точки до плоскости : .

Решение.

Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость, и определяется формулой

(3.10)

Для плоскости координаты нормального вектора определяются равенствами , , . Следовательно, .

6) Составить канонические уравнения прямой, проходящей через точки и .

Решение.

Уравнения прямой, проходящей через точки и имеют вид

(3.11)

Так как , , то в силу (3.11) получим уравнения или .

7) Найти направляющий вектор прямой .

Решение.

Направляющий вектор - это вектор, параллельный прямой.

Если прямая задана каноническими уравнениями , то направляющий вектор имеет координаты .

Рис. 4

Для рассматриваемой прямой направляющим вектором является вектор .

Отметим, что любой вектор, коллинеарный вектору так же является направляющим вектором прямой . Таким образом, при каждом ненулевом вектор с координатами будет являться направляющим вектором рассматриваемой прямой.

8) Найти косинус угла между прямыми и .

Решение.

Угол между двумя прямыми и представляет собой угол между их направляющими векторами и определяется равенством

Для прямой координаты направляющего вектора определяются равенствами , , . Для прямой - равенствами , , . Значит, .

9) Составить канонические уравнения прямой , проходящей через точку параллельно прямой : .

Решение.

Канонические уравнения прямой имеют вид . Здесь - координаты точки, через которую проходит прямая.

В канонические уравнения прямой подставим координаты точки . Получим: .

Условие параллельности прямых и имеет вид

(3.12)

Так как прямые и параллельны, то в качестве направляющего вектора прямой можно взять направляющий вектор прямой , т.е. в формуле (3.12) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид .

10) Найти угол между прямой : и плоскостью : .

Решение.

Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. Угол между прямой и плоскостью равен , где - угол между направляющим вектором прямой и нормальным вектором плоскости.

Рис. 5

Угол между прямой и плоскостью определяется формулой

Для плоскости : координаты нормального вектора определяются равенствами , , . Для прямой : координаты направляющего вектора - равенствами , , . Синус угла между прямой и плоскостью равен = . Следовательно, .

11) Составить уравнение плоскости , проходящей через точку перпендикулярно прямой : .

Решение.

Уравнение плоскости, проходящей через данную точку, имеет вид .

Подставим в указанное уравнение координаты точки . Получим: .

Условие перпендикулярности плоскости и прямой имеет вид

(3.13)

Так как искомая плоскость перпендикулярна прямой , то в качестве нормального вектора плоскости можно взять направляющий вектор прямой , т.е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

12) Составить канонические уравнения прямой , проходящей через точку перпендикулярно плоскости : .

Решение.

Канонические уравнения прямой, проходящей через данную точку, имеют вид .

Подставим в эти уравнения координаты точки . Получим:

Условие перпендикулярности прямой и плоскости имеет вид .

Так как прямая перпендикулярна плоскости , то в качестве направляющего вектора прямой можно взять нормальный вектор плоскости , т.е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид: .

13) Найти координаты точки пересечения прямой : и плоскости : .

Решение.

Координаты точки пересечения прямой и плоскости представляют собой решение системы

(3.14)

Запишем параметрические уравнения прямой : и подставим выражения для в уравнение плоскости : . Отсюда ; . Подставим найденное значение в параметрические уравнения прямой : . Следовательно, .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]