Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория эволюции 3 семинар.doc
Скачиваний:
37
Добавлен:
22.04.2019
Размер:
109.06 Кб
Скачать

1) Основная теория отбора

Естественный отбор слагается из ряда различных процессов. Основной из них — дифференциация различных индивидуумов под действием отбора. Хотя этот процесс признается как дарвинизмом XIX в., так и современной синтетической теорией, эти школы представляют его себе по-разному, как будет показано в этой главе. Кроме того, существуют различные типы индивидуального отбора и разные селективные процессы (некоторые из них остаются спорными), действующие не на индивидуальном, а на иных уровнях организации. Они будут рассмотрены в последующих главах.

Простейшая форма отбора отражена в однолокусной модели синтетической теории, и мы начнем наше обсуждение именно с этой формы.

Однолокусная модель

Допустим, что некая обширная популяция изменчива по гену А. Она содержит с высокой частотой аллель А предкового или дикого типа и с низкой частотой — новый мутантный аллель а. Если носители аллеля а оставляют больше потомков, т. е. вносят больший вклад в следующее поколение, чем носители аллеля А, и если такое дифференциальное размножение двух аллелей происходит систематически из поколения в поколение, то частота аллеля а в популяции будет постепенно возрастать, а частота аллеля А снижаться.

Это простейшая форма естественного отбора. Она позволяет сформулировать определение, применимое к однолокусной модели. В этом смысле естественный отбор представляет собой дифференциальное и неслучайное размножение различных альтернативных аллелей в популяции.

Естественный отбор происходит в том случае, когда носители одного аллеля (а) постоянно и систематически, на протяжении ряда последовательных поколений размножаются более успешно, чем носители альтернативного аллеля (А). Дифференциальное размножение альтернативных аллелей не является случайным.

Селективное преимущество аллеля а по сравнению с аллелем А не обязательно должно быть большим, чтобы изменились частоты аллелей. Предпочитаемый аллель а может обладать лишь незначительным преимуществом перед другими конкурирующими аллелями, а частота его будет тем не менее возрастать.

Коэффициент отбора

Селективное преимущество одного аллеля перед альтернативным аллелем (или аллелями) можно выразить в процентах или в виде коэффициента отбора (s), величина которого изменяется в диапазоне от 0 до 1.

Количественное значение коэффициента отбора выводится из относительных темпов репродукции альтернативных аллелей. Допустим, что в некой большой популяции а — предпочитаемый аллель, а А — аллель, которому отбор не благоприятствует. В этой популяции на каждые 100 аллелей а, передаваемых следующему поколению, будет передаваться также некоторое число аллелей А (от 100 до 0). Коэффициент отбора есть функция этого отношения. Величину s можно определить по формуле

Скорость репродукции аллеля, которому не благоприятствует отбор

s == 1 – ______________________________________________________________

Скорость репродукции аллеля, которому благоприятствует отбор

Рассмотрим следующие численные примеры:

1) Относительная частота репродукции аллелей а и А в одном поколении составляет 100 а : 99 А. Отсюда s=l—99/100 = 0.01, т. е. аллель а обладает 1%-м селективным преимуществом.

2) Вклады альтернативных аллелей в следующее поколение составляют 1000 а : 999 А. Отсюда s = 0.001, а селективное преимущество аллеля а равно 0.1%.

3) Соотношение аллелей в одном поколении составляет 100 а: 50 А; s=0.05.

4) Экстрёмальный случай — 100 а : 100 А. Здесь s = 0. Отбора не происходит.

5) Противоположный экстрёмальный случай — 100 а : 0 А. Здесь s=l, что означает полное замещение гена в одном поколении, т. е. что А — летальный ген.

Важно отметить, что селективное преимущество аллеля а соответствует принципу «всё или ничего» лишь в пятом случае. Во всех других случаях оно представляет собой лишь статистическое различие в частотах репродукции. В любом данном поколении воспроизводящейся популяции, некоторые отдельные носители аллеля а могут не размножаться, а некоторые отдельные носители аллеля А могут размножаться более успешно, чем носители аллеля а в среднем. Изменения же в генофонде определяются суммарным вкладом в размножение всех носителей аллеля а и всех носителей аллеля А.

В размножении популяции присутствует элемент случайности. Этот элемент случайности может влиять на относительную частоту продукции аллелей А и а либо локально, либо в отдельных поколениях. Но эти случайные различия в размножении носителей аллелей А и а не есть отбор. Отбор происходит только при том условии, что в дифференциальном размножении носителей альтернативных аллелей присутствует также и неслучайная компонента.

Именно поэтому в приведенном выше определении отбора мы говорим, следуя Лернеру (Lerner, 1958*), но в отличие от некоторых других авторов, о «дифференциальном и неслучайном» размножении; и по этой же причине мы специально подчеркнули, что популяция должна иметь большие размеры.