Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТРОЛОГИЯ (1-60).doc
Скачиваний:
50
Добавлен:
22.04.2019
Размер:
6.4 Mб
Скачать

35(Случайные погрешности. Оценка результатов измерений)

Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).

Для оценки случайной погрешности измерения существует несколько способов. Наиболее распространена оценка с помощью стандартной или средней квадратичной погрешности  (ее часто называют стандартной погрешностью или стандартом измерений).

Средней квадратичной погрешностью называется величина

где n  число наблюдений.

Если число наблюдений очень велико, то подверженная случайным колебаниям величина Sn стремится к постоянному значению  :

.

Именно этот предел и входит в качестве параметра  в распределение Гаусса (1). Квадрат этой величины называется дисперсией измерений. В действительности, по результатам измерений всегда вычисляется не  , а ее приближенное значение Sn, которое, вообще говоря, тем ближе к  , чем больше n.

Случайная погрешность – это составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Наличие случайных погрешностей выявляется при проведении ряда измерений постоянной физической величины, когда оказывается, что результаты измерений не совпадают друг с другом. Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. Во многих случаях влияние случайных погрешностей можно уменьшить путем выполнения многократных измерений с последующей статистической обработкой полученных результатов.

36(Нормальный закон распределения случайных величин)

Нормальный закон распределения встречается в природе весьма часто, поэтому для него разработаны отдельные эффективные методы моделирования. Формула распределения вероятности значений случайной величины x по нормальному закону имеет вид:

Как видно, нормальное распределение имеет два параметра: математическое ожидание mx и среднеквадратичное отклонение σx величины x от этого математического ожидания.

x — случайная величина;

y(x) — вероятность принятия случайной величиной значения x;

mx — математическое ожидание;

σx — среднее квадратичное отклонение.

Нормализованным нормальным распределением называется такое нормальное распределение, у которого mx = 0 и σx = 1. Из нормализованного распределения можно получить любое другое нормальное распределение с заданными mx и σx по формуле: z = mx + x · σx.

Рассматривая последнюю формулу, вспомните формулы компьютерной графики: операция масштабирования выражается в математической модели через умножение (это соответствует изменению разброса величины, растягиванию геометрического образа), операция смещения выражается через сложение (это соответствует изменению значения наиболее вероятной величины, смещению геометрического образа).

Функция нормального распределения имеет вид колокола. На рис. 25.1 показано нормализованное нормальное распределение.

Рис. 25.1. Графический вид нормального закона распределения случайной величины х с параметрами mx = 0 и σx = 1 (распределение нормализовано)

График на рис. 25.1 показывает, что в области σ < x < σ на графике сосредоточено 68% площади распределения, в области –2σ < x < 2σ на графике сосредоточено 95.4% площади распределения, в области –3σ < x < 3σ на графике сосредоточено 99.7% площади распределения («правило трех сигм»).