Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Demkin_otvety_New.doc
Скачиваний:
13
Добавлен:
17.04.2019
Размер:
3.22 Mб
Скачать
  1. Какие инструкции аппаратной синхронизации вы знаете? Сравните их. Приведите 2 примера, как на их основе можно построить различные примитивы синхронизации (условные переменные, семафоры, …).

Переменная-замок

Одним из возможных не вполне корректных решений проблемы синхронизации является использование переменной-замка. Например, можно сделать условием вхождения в критическую секцию значение 0 некоторой разделяемой переменной lock. Сразу же после проверки это значение меняется на 1 (закрытие замка). При выходе из критической секции замок открывается (значение переменной lock сбрасывается в 0).

TSL команды

Многие вычислительные архитектуры имеют инструкции, которые могут обеспечить атомарность последовательности операций при входе в критическую секцию. Такие команды называются Test and_Set Lock или TSL командами.

Спин-блокировка

Рассмотренные решения проблемы синхронизации, безусловно, являются корректными. Они реализуют следующий алгоритм: перед входом в критическую секцию поток проверяет возможность входа и, если такой возможности нет, продолжает опрос значения переменной-замка. Такое поведение потока, связанное с его вращением в пустом цикле, называется активным ожиданием или спин-блокировкой (spin lock). Очевидно, что на однопроцессорной машине это пустая трата машинного времени, поскольку значение опрашиваемой переменной в течение этого цикла не может быть волшебным образом изменено. Спин-блокировка, хотя бы временная, может быть полезна на многопроцессорных машинах, где один из потоков крутится в цикле, а второй - работает на другом процессоре и может изменить значение переменной-замка. В этом случае у активно ожидающего потока есть шанс быстро войти в критическую секцию, не будучи блокированным. Блокировка потока связана с переходом в режим ядра (примерно 1000 тактов работы процессора).Однако более разумным решением, особенно на однопроцессорных машинах, представляется перевод потока в состояние ожидания, если вход в критическую секцию запрещен. После снятия запрета на вход в критическую секцию этот поток переводится в состояние готовности.

Функции EnterCriticalSection и LeaveCriticalSection реализованы на основе Interlocked-функций, выполняются атомарным образом и работают очень быстро. Существенным является то, что в случае невозможности входа в критический участок поток переходит в состояние ожидания. Впоследствии, когда такая возможность появится, поток будет "разбужен" и сможет сделать попытку входа в критическую секцию. Механизм пробуждения потока реализован с помощью объекта ядра "событие" (event), которое создается только в случае возникновения конфликтной ситуации.Уже говорилось, что иногда, перед блокированием потока, имеет смысл некоторое время удерживать его в состоянии активного ожидания. Чтобы функция EnterCriticalSection выполняла заданное число циклов спин-блокировки, критическую секцию целесообразно проинициализировать с помощью функции InitalizeCriticalSectionAndSpinCount.

Мьютексы также представляют собой объекты ядра, используемые для синхронизации, но они проще семафоров, так как регулируют доступ к единственному ресурсу и, следовательно, не содержат счетчиков. По существу они ведут себя как критические секции, но могут синхронизировать доступ потоков разных процессов. Инициализация мьютекса осуществляется функцией CreateMutex, для входа в критическую секцию используется функция WaitForSingleObject, а для выхода - ReleaseMutex. Если поток завершается, не освободив мьютекс, последний переходит в свободное состояние. Отличие от семафоров в том, что поток, занявший мьютекс, получает права на владение им. Только этот поток может освободить мьютекс. Поэтому мнение о мьютексе как о семафоре с максимальным значением 1 не вполне соответствует действительности.

Известно, что семафоры, предложенные Дейкстрой в 1965 г., представляет собой целую переменную в пространстве ядра, доступ к которой, после ее инициализации, может осуществляться через две атомарные операции: wait и signal (в ОС Windows это функции WaitForSingleObject и ReleaseSemaphore соответственно).

wait(S): если S <= 0 процесс блокируется

(переводится в состояние ожидания);

в противном случае S = S - 1;

signal(S): S = S + 1

Семафоры обычно используются для учета ресурсов (текущее число ресурсов задается переменной S) и создаются при помощи функции CreateSemaphore, в число параметров которой входят начальное и максимальное значение переменной. Текущее значение не может быть больше максимального и отрицательным. Значение S, равное нулю, означает, что семафор занят.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]