Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты по инфе.docx
Скачиваний:
18
Добавлен:
15.04.2019
Размер:
203.5 Кб
Скачать
  1. Роль и значение информационных революций.

В истории развития цивилизации произошло несколько информационных революций — преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества. Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколениям.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

· переход от механических и электрических средств преобразования информации к электронным;

· миниатюризация всех узлов, устройств, приборов, машин;

· создание программно — управляемых устройств и процессов.

Последняя информационная революция выдвигает на первый план новую отрасль — информационную индустрию, связанную с производством технических средств, методов, технологий для производства новых знаний. Важнейшими составляющими информационной индустрии становятся все виды информационных технологий, особенно телекоммуникации. Современная информационная технология опирается на достижения в области компьютерной техники и средств связи. (Информационная технология — процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления.)

Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой — к созданию новых средств и способов удовлетворения этих потребностей.

Бурное развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенном на использовании различной информации и получившего название информационного общества.

  1. Информатизация общества. Основные этапы развития вычислительной техники.

    Под информатизацией общества понимают реализацию комплекса мер, направленных на обеспечение полного и своевременного использования членами общества достоверной информации, что в значительной мере зависит от степени освоения и развития новых информационных технологий.     В информационном обществе изменятся не только производство, но и весь уклад жизни, система ценностей. В информационном обществе производятся и потребляются интеллект, знания, что приводит к увеличению доли умственного труда. От человека потребуется способность к творчеству.     Материальной и технологической базой информационного общества станут различного рода системы на базе компьютерной техники и компьютерных сетей, информационной технологии, телекоммуникационной связи.     Информационное общество — общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы — знаний.     Некоторые характерные черты информационного общества:     • решена проблема информационного кризиса, т.е. разрешено противоречие между информационной лавиной и информационным голодом;     • обеспечен приоритет информации по сравнению с другими ресурсами;     • главной формой развития станет информационная экономика;     • в основу общества будут заложены автоматизированные генерация, хранение, обработка и использование знаний с помощью новейшей информационной техники и технологии;     • информационные технологии охватывают все сферы социальной деятельности человека;     • с помощью средств информатики реализован свободный доступ каждого человека к информационным ресурсам всей цивилизации.     Один из этапов перехода к информационному обществу — компьютеризация общества, где основное внимание уделяется развитию и внедрению компьютеров, обеспечивающих оперативное получение результатов переработки информации и ее накопление.     Основной инструмент компьютеризации — ЭВМ (или компьютер). Человечество проделало долгий путь, прежде чем достигло современного состояния средств вычислительной техники.     Основными этапами развития вычислительной техники являются:     I. Ручной — с 50-го тысячелетия до н. э.;     II. Механический — с середины XVII века;     III. Электромеханический — с девяностых годов XIX века;     IV. Электронный — с сороковых годов XX века.

    I. Ручной период автоматизации вычислений начался на заре человеческой цивилизации. Он базировался на использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке — наиболее развитом счетном приборе древности. Аналогом абака на Руси являются дошедшие до наших дней счеты. Использование абака предполагает выполнение вычислений по разрядам, т.е. наличие некоторой позиционной системы счисления.     В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода автоматизации.

    II. Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. Вот наиболее значимые результаты, достигнутые на этом пути.     1623 г. — немецкий ученый В.Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразрядными числами.     1642 г. — Б.Паскаль построил восьмиразрядную действующую модель счетной суммирующей машины. Впоследствии была создана серия из 50 таких машин, одна из которых являлась десятиразрядной. Так формировалось мнение о возможности автоматизации умственного труда.     1673 г. — немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции.     1881 г. — организация серийного производства арифмометров.     Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.     Английский математик Чарльз Бэббидж (Charles Babbage, 1792—1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, разностная машина, работала на паровом двигателе. Она заполняла таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестиразрядным калькулятором, способным производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа — аналитическая машина, использующая принцип программного управления и предназначавшаяся для вычисления любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оценку ученых.     Аналитическая машина состояла из следующих четырех основных частей: блок хранения исходных, промежуточных и результирующих данных (склад — память); блок обработки данных (мельница — арифметическое устройство); блок управления последовательностью вычислений (устройство управления); блок ввода исходных данных и печати результатов (устройства ввода/вывода).     Одновременно с английским ученым работала леди Ада Лавлейс (Ada Byron, Countess of Lovelace, 1815— 1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

    III. Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет — от первого табулятора Г.Холлерита до первой ЭВМ “ENIAC”.     1887 г. — создание Г.Холлеритом в США первого счетно-аналитического комплекса, состоящего из ручного перфоратора, сортировочной машины и табулятора. Одно из наиболее известных его применений — обработка результатов переписи населения в нескольких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, положивших начало известной корпорации IBM.     Начало — 30-е годы XX века — разработка счетноаналитических комплексов. Состоят из четырех основных устройств: перфоратор, контрольник, сортировщик и табулятор. На базе таких комплексов создаются вычислительные центры.     В это же время развиваются аналоговые машины.     1930 г. — В.Буш разрабатывает дифференциальный анализатор, использованный в дальнейшем в военных целях.     1937 г. — Дж. Атанасов, К.Берри создают электронную машину ABC.     1944 г. — Г.Айкен разрабатывает и создает управляемую вычислительную машину MARK-1. В дальнейшем было реализовано еще несколько моделей.     1957 г. — последний крупнейший проект релейной вычислительной техники — в СССР создана РВМ-I, которая эксплуатировалась до 1965 г.

    IV. Электронный этап, начало которого связывают с созданием в США в конце 1945 г. электронной вычислительной машины ENIAC.     В истории развития ЭВМ принято выделять несколько поколений, каждое из которых имеет свои отличительные признаки и уникальные характеристики. Главное отличие машин разных поколений состоит в элементной базе, логической архитектуре и программном обеспечении, кроме того, они различаются по быстродействию, оперативной памяти, способам ввода и вывода информации и т.д. Эти сведения обобщены ниже в таблице на c. 10.     ЭВМ пятого поколения должны удовлетворять следующим качественно новым функциональным требованиям:     1) обеспечивать простоту применения ЭВМ путем эффективных систем ввода/вывода информации, диалоговой обработки информации с использованием естественных языков, возможности обучаемости, ассоциативных построений и логических выводов (интеллектуализация ЭВМ);     2) упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; усовершенствовать инструментальные средства разработчиков;     3) улучшить основные характеристики и эксплуатационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.

3.информационная культура

Постиндустриальное состояние человеческой цивилизации правомерно связывают с развитием информационного общества - общества, уровень которого в решающей степени определяется количеством и качеством накопленной информации, ее свободой и доступностью. Возникновение информационного общества неразрывно связано с осознанием фундаментальной роли информации в общественном развитии, рассмотрением в широком социокультурном контексте таких феноменов, как информационные ресурсы, новые информационные технологии, информатизация.

Становление информационного общества потребовало обеспечить адекватность образования динамичным изменениям, происходящим в природе и обществе, всей окружающей человека среде, возросшему объему информации, стремительному развитию новых информационных технологий. Особое значение в информационном обществе приобретает организация информационного образования и повышение информационной культуры личности.

Сегодня есть все основания говорить о формировании новой информационной культуры, которая может стать элементом общей культуры человечества. Ею станут знания об информационной среде, законах ее функционирования, умение ориентироваться в информационных потоках. Информационная культура пока еще является показателем не общей, а, скорее, профессиональной культуры, но со временем станет важным фактором развития каждой личности.

Понятие "информационная культура" характеризует одну из граней культуры, связанную с информационным аспектом жизни людей. Роль этого аспекта в информационном обществе постоянно возрастает; и сегодня совокупность информационных потоков вокруг каждого человека столь велика, разнообразна и разветвлена, что требует от него знания законов информационной среды и умения ориентироваться в информационных потоках. В противном случае он не сможет адаптироваться к жизни в новых условиях, в частности, к изменению социальных структур, следствием которого будет значительное увеличение числа работающих в сфере информационной деятельности и услуг. В настоящее время существует множество определений информационной культуры. Рассмотрим некоторые из них.

В широком смысле под информационной культурой понимают совокупность принципов и реальных механизмов, обеспечивающих позитивное взаимодействие этнических и национальных культур, их соединение в общий опыт человечества.

В узком смысле - оптимальные способы обращения со знаками, данными, информацией и представление их заинтересованному потребителю для решения теоретических и практических задач; механизмы совершенствования технических сред производства, хранения и передачи информации; развитие системы обучения, подготовки человека к эффективному использованию информационных средств и информации.

Один из ведущих отечественных специалистов в области информатизации Э.П. Семенюк под информационной культурой понимает информационную компоненту человеческой культуры в целом, объективно характеризующую уровень всех осуществляемых в обществе информационных процессов и существующих информационных отношений.

4.инфрматика-предмет и задачи.нформация и её свойства

Информатика – это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.

Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники, что, несомненно, сужает ее, казалось бы, обобщающий характер. Между этими двумя дисциплинами провести четкую границу не представляется возможным в связи с ее размытостью и неопределенностью, хотя существует довольно распространенное мнение, что информатика является одним из направлений кибернетики.

Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники. Кибернетика и информатика, внешне очень похожие дисциплины, различаются, скорее всего, в расстановке акцентов:

в информатике – на свойствах информации и аппаратно-программных средствах ее обработки;

Информация - сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся  о них степень неопределённости , неполноты знаний

Свойства:

  1. Объективность информации. Объективный – существующий вне и независимо от человеческого сознания. Информация – это отражение внешнего объективного мира. Информация объективна, если она не зависит от методов ее фиксации, чьего-либо мнения, суждения. Пример. Сообщение «На улице тепло» несет субъективную информацию, а сообщение «На улице 22°С» – объективную, но с точностью, зависящей от погрешности средства измерения. Объективную информацию можно получить с помощью исправных датчиков, измерительных приборов. Отражаясь в сознании человека, информация может искажаться (в большей или меньшей степени) в зависимости от мнения, суждения, опыта, знаний конкретного субъекта, и, таким образом, перестать быть объективной.

  2. Достоверность информации. Информация достоверна, если она отражает истинное положение дел. Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной. Достоверная информация помогает принять нам правильное решение. Недостоверной информация может быть по следующим причинам:

    • преднамеренное искажение (дезинформация) или непреднамеренное искажение субъективного свойства;

    • искажение в результате воздействия помех («испорченный телефон») и недостаточно точных средств ее фиксации.

  3. Полнота информации. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению.

  4. Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

  5. Актуальность информации – важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна.

  6. Полезность (ценность) информации. Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.

5.классифиукация и кодирование информации

классификация – это упорядоченная в рамках определенной области система понятий с явными или неявнями принципами организации.

Классификация базируется на предварительных знаниях и формирует ключ, который позволяет углубить знания

        1. Цель классификации – поддерживать создание статистики охраны здоровья или облегчать исследования в этой области. Примером может служить классификация отклонений электрокардиограммы или диагноза в определенном классе болезней.

При классификации понятия упорядочиваются по родовым связям. Родовые связи – это связи типа ”А из рода B”.

Пример: Язва желудка- более узкое понятие, а заболевание органов пищеварительного тракта - более широкое.

Общие понятия

Система кодирования применяется для замены названия объекта на условное обозначение (код) в целях обеспечения удобной и более эффективной обработки информации.

Система кодирования - совокупность правил кодового обозначения объектов.

Код строится на базе алфавита, состоящего из букв, цифр и других символов. Код характеризуется:

длиной - число позиций в коде;

структурой - порядок расположения в коде символов, используемых для обозначения классификационного признака.

Процедура присвоения объекту кодового обозначения называется кодированием. Можно выделить две группы методов, используемых в системе кодирования (рис.2.7), которые образуют:

классификационную систему кодирования, ориентированную на проведение предварительной классификации объектов либо на основе иерархической системы, либо на основе фасетной системы;

регистрационную систему кодирования, не требующую предварительной классификации объектов. Рассмотрим представленную на рис. 2.7 систему кодирования.

Рис. 2.7. Система кодирования, использующая разные методы

6.инф.технологии

Информационные технологии (ИТ, от англ. information technologyIT) — широкий класс дисциплин и областей деятельности, относящихся к технологиям создания, управления и обработки данных, в том числе с применением вычислительной техники. В последнее время под информационными технологиями чаще всего понимаюткомпьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации. Специалистов по компьютерной технике и программированию часто называют ИТ-специалистами.

Новая информационная технология — это технология, которая основывается на применении компьютеров, активном участии пользователей (непрофессионалов в области программирования) в информационном процессе, высоком уровне дружественного пользовательского интерфейса, широком использовании пакетов прикладных программ общего и проблемного назначения, доступе пользователя к удаленным базам данных и программам благодаря вычислительным сетям ЭВМ. 

(составляющие ИТ)Используемые в производственной сфере такие технологические понятия, как норма, норматив, технологический процесс, технологическая операция и т.п., могут применяться и в информационной технологии. Прежде чем разрабатывать эти понятия в любой технологии, в том числе и в информационной, всегда следует начинать с определения цели. Затем следует попытаться провести структурирование всех предполагаемых действий, приводящих к намеченной цели, и выбрать необходимый программный инструментарий

1 - й уровень - этапы, где реализуются сравнительно длительные технологические процессы, состоящие из операций и действий последующих уровней.

Пример 2.3. Как следует понимать этап информационной технологии. Технология создания шаблона формы документа в среде текстового процессора Word 6.0 состоит из следующих этапов:

  • этап 1 - создание постоянной части формы в виде текстов и таблиц;

  • этап 2 - создание постоянной части формы в виде кадра, куда затем помещается рисунок;

  • этап 3 - создание переменной части формы;

  • этап 4 - защита и сохранение формы.

2 - й уровень - операции, в результате выполнения которых будет создан конкретный объект в выбранной на 1-м уровне программной среде.

Пример 2.4. Как следует понимать операцию информационной технологии. Рассмогрим этап 2 (см. пример 2.3) технологии создания постоянной части формы документа в виде кадра в среде текстового процессора Word 6.0, который состоит из следующих операций:

  • операция 1 - создание кадра;

  • операция 2 - настройка кадра;

  • операция 3 - внедрение в кадр рисунка.

3-й уровень - действия - совокупность стандартных для каждой программной среды приемов работы, приводящих к выполнению поставленной в соответствующей операции цели. Каждое действие изменяет содержание экрана.

Пример 2.5. Как следует понимать действие информационной технологии. Рассмотрим операцию 3 (см. пример 2.4) - внедрение в кадр рисунка в среде текстового процессора Word 6.0, которая состоит из следующих действий:

  • действие 1 - установка курсора в кадре;

  • действие 2 - выполнение команды ВСТАВКА,Рисунок;

  • действие 3 - установка значений параметров в диалоговом окне.

4-й уровень - элементарные операции по управлению мышью и клавиатурой.

Пример 2.6. Как следует понимать элементарную операцию информационной технологии. Ею может быть: ввод команды, нажатие правой кнопки мыши, выбор пункта меню и т.п. Необходимо понимать, что освоение информационной технологии и дальнейшее ее использование должны свестись к тому, что вы должны сначала хорошо овладеть набором элементарных операций, число которых ограничено. Из этого ограниченного числа элементарных операций в разных комбинациях составляется действие, а из действий, также в разных комбинациях, составляются операции, которые определяют тот или иной технологический этап. Совокупность технологических этапов образует технологический процесс (технологию).

Примечание. Технологический процесс необязательно должен состоять из всех уровней, представленных на рис. 2.2. Он может начинаться с любого уровня и не включать, например, этапы или операции, а состоять только из действий. Для реализации этапов технологического процесса могут использоваться разные программные среды.

Информационная технология, как и любая другая, должна отвечать следующим требованиям:

  • обеспечивать высокую степень расчленения всего процесса обработки информации на этапы (фазы), операции, действия;

  • включать весь набор элементов, необходимых для достижения поставленной цели;

  • иметь регулярный характер. Этапы, действия, операции технологического процесса могут быть стандартизированы и унифицированы, что позволит более эффективно осуществлять целенаправленное управление информационными процессами.

Проблемы ит:

1. Сама по себе система образования является консервативной. Возникает противоречие между этим консерватизмом и прогрессивным, развивающем воздействии проникающих в эту систему информационных технологий. Эти противоречия являются толчком к развитию самой системы, но консервативная их составляющая значительно тормозит появление качественных изменений, так как система стремится занять устойчивое положение, из которого ее выводит проникающее из вне воздействие информационных технологий.

2. Существует противоречие между тенденциями гуманитаризации современного образования и его информатизацией. Это противоречие также является развивающим систему образования, но и замедляющим внедрение информационных технологий особенно в преподавание предметов и дисциплин гуманитарного цикла.

3. Современные информационные технологии направлены на интенсификацию тех процессов, в которых их применяют. В образовании это выражается в интенсификации передачи и усвоения знаний. Все больший поток информации проходит через субъекты и объекты образовательных процессов. Возникает диспропорция между скоростью, интенсивностью поступления информации и возможностями обработки ее человеческим мозгом. В некоторой степени сами информационные технологии позволяют преодолевать эту диспропорцию в тех случаях, когда на них перекладываются некоторые функции субъектов образовательного процесса (например, контроль знаний осуществляется при помощи различных контролирующих компьютерных программ и программ-тестов и т.д.). Однако, период удвоения количества информации, накопленной человечеством, постоянно сокращается (здесь уместно указать на такое явление нашей действительности, как «информационные взрыв»). В то же время, качественные изменения в физиологии человека происходят гораздо медленнее (это эволюционное развитие).

4. Лавинообразность в развитии информационных технологий ведет к постоянной гонке за знаниями. Это заключается в том, что специалист постоянно должен учиться, чтобы соответствовать своей квалификации, т.е. он должен находиться в системе образования в течение всей своей профессиональной трудовой деятельности. Из-за этого все чаще приходится сталкиваться с повышением квалификации, а некоторые специальности, которые напрямую связаны с разработкой и использованием информационных технологий, ставят специалиста в такие условия, когда ему постоянно приходится овладевать все новыми и новыми знаниями.

Все чаще в этой гонке цель - овладевание конечным знанием с тем, чтобы применять его на практике - размывается и на первое место выходит сам процесс овладевания бурно развивающимися информационными технологиями (знания ради знаний), т.е. нет конечной цели - есть только процесс образования ради самого процесса.

Кроме того, возник и углубляется информационный кризис - невозможность остановить увеличение энтропии в постоянно растущем процессе накопления знаний, порой не находящих практического применения в силу устаревания. Особенно это прекрасно видно в том, что некоторые информационные технологии умирают, так и не воплотившись на практике. А страдают от этого специалисты, профессиональная подготовка которых не находит практического применения. Получив в учебном заведении специальность, им приходится опять переучиваться. А за время их переучивания в их профессию внедряются еще более новые технологии. И так до бесконечности.

5. Процессы интенсификации развития информационных технологий опережают внедрение их в образование. Это, в частности, происходит из-за того, что значительно больше времени требуется для освоения технологий преподавателями, для создания методик их применения. Эти тенденции не позволяют нам говорить об «опережающем знании», тезис о котором был не так давно провозглашен.

7.научные и технические предпосылки создания ЭВМ

История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен — все подобные действия связаны со счётом. Для подсчёта люди использовали собственные пальцы, камешки, палочки и узелки. Потребность в поиске решений всё более и более сложных и сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту.

Одним из первых устройств (V—VI вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев — «суанпан».

В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шот». В XVII веке этот прибор уже обрёл вид привычных русских счёт.

В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание.

В 1670—1680 гг. немецкий математик Готфрид Лейбниц конструировал счётную машину, которая выполняла все арифметические действия. В течение следующих двухсот лет было изобретено и построено ещё несколько подобных счётных устройств, которые, однако, из-за своих недостатков, в том числе из-за медлительности в работе, не получили широкого распространения.

Лишь в 1878 году русский ученый П. Чебышёв предложил счётную машину, выполнявшую сложение и вычитание многозначных чисел. Наибольшую популярность получил тогда арифмометр, сконструированный петербургским инженером Однером в 1874 году Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнять все четыре арифметические действия.

В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр — «Феликс». Эти счётные устройства использовались несколько десятилетий, став основным техническим средством облегчения человеческого труда.