Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 биофизика.doc
Скачиваний:
190
Добавлен:
14.04.2019
Размер:
1.28 Mб
Скачать
  1. Критерии спонтанности, самопроизвольности протекания процессов в тд системах.

Критерий устойчивости стационарного состояния – в виде положительного характера величины избыточной продукции энтропии при небольшом возмущении системы.

Отрицательный характер этой величины указывает на неуст. стац. (особой) точки. Вблизи равновесия критерий устойч. > 0 совпадает с теоремой о минимуме продуцирования энтропии в стационарном состоянии. Что касается ТД критериев эволюции открытых систем, то эта задача решена только для состояний, близких к равновесию. Именно в этой области монотонное уменьшение скорости продуцирования энтропии < 0 и служит критерием самопроизвольного стремления к устойчивому стационарному состоянию.

Обратимый ТД процесс - процесс перехода одного состояния системы в другое, если обратный переход не связан с некомпенсированным превращением E в А.

Процесс перехода одного состояния системы в другое называется необратимым, если обратный переход связан с необходимостью E из вне.

Биохим. р-ция обратима, если можно осуществить в прямом и обратном направлении (даже если Е из окружающей среды).

Любой ТД обратимый процесс стремится к состоянию ТД равновесия, т.е. к наиболее деградирующему состоянию. Б\х обратимый процесс - стремится к равновесию, но не достигает его. Скорость прямой реакции =скорости обратной реакции.

Формальный признак обратимости - время. Если для к-л процесса знак + можно заменить на знак - перед параметром времени (например, если t^2), то процесс обратим. Если t зависит от знака, то данный процесс является необратимым.

По знаку и величине ТД потенциала можно судить о направленности процесса, если в результате процесса величина ТД потенциалов уменьшается, такой процесс является самопроизвольным, идет с выделением энергии и называется экзергоническим, если т/д потенциалы увеличивается, то процесс идет не самопроизвольный, требует притока энергии извне и называется эндергоническим (возможно см. вопрос 25)

  1. Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.

Энергия – мера определённой формы движения материи. Является произведением фактора экстенсивности на интенсивность.

Расчёт ТД параметров для ТД систем:

ТД параметра в биолог. сист. всего 3: Z, H, S.

только для обратимых процессов в состоянии равновесия:

dZ =∆G =dH – TdS, ∆H=-dQ.

dlnK/dT = - (∆Q/RT2).

Н – энтальпия, Z (G) - ТД потенциал – свободная Е при постоянном давлении и t. dG0 – свободная Е = Е Гиббса, если все исходные в-ва и продукты р-ции определяются при 250С, это табличное значение.

∆Z=∆Z0+RTlnK, где К – это константа скорости биохим. р-ции; ∆Z0 – стандартный ТД потенциал (справочная величина); R – универсальная газовая постоянная.

Свободная Е Гельмгольца (F) – часть Е, кот. полностью переходит в работу. Энергия: 1) высшая (механич, хим, электрич.); 2) тепловая или деградированная.

TdS = dU + dA

-dA = d (U - TdS)

F=UTS – это свободная энергия Гельмгольца.

dF = dU – TdS – это запись 2 закона ТД ч/з свободную Е Гельмгольца.

Если V, T = const, то pdV=0, то Wmax=TdS-dU=-d(U-TS)=-dF; F=U-TS – термодинамический потенциал Гельм-Гольци или свободная энергия Гельм-Гольца.

Если P, T = const, то Wmax=-d(U+pdV-TS)=-dG; G – т/д потенциал Гиббса или свободная энергия Гиббса

В реальных условиях редко Р постоянно, а V системы изменяется, следовательно величины т/д потенциалов совпадают.

Выполенение полезной работы при выполнении необратимого процесса всегда сопровождается рассеянием энергии, величину которой определяет произведением TdS, чем больше эта величина, тем более необратимым является процесс.

По знаку и величине ТД потенциала можно судить о направленности процесса, если в результате процесса величина ТД потенциалов уменьшается, такой процесс является самопроизвольным, идет с выделением энергии и называется экзергоническим, если т/д потенциалы увеличивается, то процесс идет не самопроизвольный, требует притока энергии извне и называется эндергоническим.

При достижении равновесия ТД потенциалы стремятся к минимальному значению.

Процессы превращений энергии и совершения работы могут протекать до тех пор пока свободная энергия не станет равна нулю, а энтропия максимальной. Такое состояние носит названия ТД равновесия.

Такое состояние в неживой природе является конечным состоянием, в направлении которого эволюционируют все ТД системы.