Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мини шпоры по азанчееву.docx
Скачиваний:
4
Добавлен:
23.12.2018
Размер:
456.85 Кб
Скачать

12. Волновое уравнение

Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн.

В общем случае волновое уравнение записывается в виде

,

где  — оператор Лапласа,  — неизвестная функция,  — время,  — пространственная переменная,  — фазовая скорость.

В одномерном случае уравнение называется также уравнением колебания струны и записывается в виде

.

Оператор Д’Аламбера

Разность называется оператором Д’Аламбера (разные источники используют разный знак). Таким образом, волновое уравнение записывается как:

Неоднородное уравнение

Допустимо также рассматривать неоднородное волновое уравнение

,

где f = f(x,t) — некая заданная функция внешнего воздействия (внешней силы).

Скорость волны

1.Определение длины волны. Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах. 2. Величины, характеризующие волну: длина волны, скорость волны, период колебаний, частота колебаний. Единицы измерения в системе СИ: длина волны [лямбда] = 1 м скорость распространения волны [ v ] = 1м/с период колебаний [ T ] = 1c частота колебаний [ ню ] = 1 Гц 3. Расчетные формулы

Волново́е сопротивле́ние

        передающих электрических линий, отношение напряжения к току в любой точке линии, по которой распространяются электромагнитные волны. В. с. представляет собой сопротивление, которое оказывает линия бегущей волне напряжения. В бесконечно длинной линии или линии конечной длины, но нагруженной на сопротивление, равное В. с., не происходит отражения электромагнитных волн и образования стоячих волн (См. Стоячие волны). В этом случае линия передаёт в нагрузку практически всю энергию от генератора (без потерь). В. с. равно:

        

        где L и С — индуктивность и ёмкость единицы длины линии.

Или

В электродинамике волновое сопротивление линий передачи — отношение амплитуды напряжения бегущей волны к амплитуде силы тока бегущей волны в линии, по которой распространяется электромагнитная волна, однозначно зависит от таких параметров линии, как ёмкость, диэлектрическая проницаемость материала проводника (зависит от частоты работы генератора сигнала), индуктивность и сопротивление на единицу длины; волновое сопротивление среды — отношение амплитуд электрического и магнитного полей электромагнитных волн, распространяющихся в среде.

ОТРАЖЕНИЕ ВОЛН

ОТРАЖЕНИЕ ВОЛН, частичное или полное возвращение волн (звуковых, электромагнитных), достигающих границы раздела двух сред (препятствия), в ту среду, из которой они подходят к этой границе. Угол между направлением движения отражённой волны и нормалью к границе раздела сред называется углом отражения; он равен углу падения, но расположен по другую сторону от нормали. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

Стоячая волна

Стоячая волна (чёрная) изображена в виде суммы двух волн (красная и синяя), распространяющихся в противоположных направлениях.

Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе — волны Шумана.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

излучение электромагнитных волн

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Поляризация — для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H.

объемная плотность энергии электромагнитных волн

Объёмная плотность энергии электромагнитного поля в линейной изотропной среде, как известно из электродинамики, даётся выражением (мы учли здесь также связь между векторами Е и Н в электромагнитной волне):

Вектор плотности потока энергии электромагнитной волны (то, что в теории упругих волн называется вектором Умова) называется вектором Умова-Пойнтинга, или чаще просто вектором Пойнтинга Р:

В случае синусоидальной монохроматической плоской (когда плоскости колебаний векторов Е и Н не меняются со временем) электромагнитной волны, распространяющейся в направлении х:

для интенсивности получается:

        Следует обратить внимание, что интенсивность электромагнитной волны зависит от амплитуды (либо электрического, либо магнитного поля; они связаны), но не зависит от частоты волны - в отличие от интенсивности упругих механических волн.

Поток звуковой энергии, акустическая мощность — величина, равная отношению звуковой энергии dW, переносимой упругой средой через заданную поверхность, к интервалу времени dt, за который эта энергия переносится:

Единица измерения — ватт (Вт).

Поток энергии в момент времени t равен

 

J = –c2ÑWt,      J/t = –c2ÑW.      

Вектор Пойнтинга (также вектор Умова-Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС),

(в системе СИ),

где E и H — вектора напряжённости электрического и магнитного полей соответственно.

(в комплексной форме)[1],

где E и H — вектора комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

Вектор Пойнтинга и импульс электромагнитного поля

В силу симметричности тензора энергии-импульса, все три компоненты вектора пространственной плотности импульса электромагнитного поля равны соответствующим компонентам вектора Пойнтинга, делённым на квадрат скорости света:

(в системе СИ)

В этом соотношении проявляется материальность электромагнитного поля.

Поэтому, чтобы узнать импульс электромагнитного поля в той или иной области пространства, достаточно проинтегрировать вектор Пойнтинга по объёму.

Длина

Название

Частота

более 100 км

Нзкочастотные электрические колебания

0-3 кГц

100 км - 1 мм

Радиоволны

3 кГц - 3 ТГц

100-10 км

мириаметровые (очень низкие частоты)

3 - 3-кГц

10 - 1 км

километровые (низкие частоты)

30 - 300 кГц

1 км - 100 м

гектометровые (средние частоты)

300 кГц - 3 МГц

100 - 10 м

декаметровые (высокие частоты)

3 - 30 МГц

10 - 1 м

метровые (очень высокие частоты)

30 - 300МГц

1 м - 10 см

дециметровые (ультравысокие)

300 МГц - 3 ГГц

10 - 1 см

сантиметровые (сверхвысокие)

3 - 30 ГГц

1 см - 1 мм

миллиметровые (крайне высокие)

30 - 300 ГГц

1 - 0.1 мм

децимиллиметровые (гипервысокие)

300 ГГц - 3 ТГц

2 мм - 760 нм

Инфракрасное излучение

150 ГГц - 400 ТГц

760 - 380 нм

Видимое излучение (оптический спектр)

400 - 800 ТГц

380 - 3 нм

Ультрафиолетовое излучение

800 ТГц - 100 ПГц

10 нм - 1пм

Рентгеновское излучение

30 ПГц - 300 ЭГц

<=10 пм

Гамма-излучение

>=30 ЭГц