Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Differentsial_funktsii.doc
Скачиваний:
10
Добавлен:
19.12.2018
Размер:
416.26 Кб
Скачать

5. Применение дифференциала к приближенным вычислениям

Пусть нам известно значение функции y0 = f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy = dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy dy или Δy f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0) ≈ f '(x0)·Δx. Откуда

f(x) ≈ f(x0) + f '(x0)·Δx

При выполнении приближенных вычислений определяют абсолютную (разность между точным и приближенным значениями) и относительную погрешности: .

Пример. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.

Имеем Δy dy = f'(x)·Δx f'(x)=2x – 2, f'(3)=4, Δx=0,01. Поэтому Δy ≈ 4·0,01 = 0,04.

ФОРМУЛА ТЕЙЛОРА

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка (n+1) включительно (т.е. все производные функции до порядка n непрерывны и дифференцируемы в этой окрестности).

2) Пусть х – любое значение из этой окрестности, но х а.

Тогда между точками х и а найдется такая точка , что справедлива формула:

Это выражение называется формулой Тейлора, а выражение: называется остаточным членом в форме Лагранжа.

Формула Тейлора имеет огромное значение для различных математических преобразований. С ее помощью можно находить значения различных функций, интегрировать, решать дифференциальные уравнения и т.д.

Если в формуле Тейлора положить а = 0, то она запишется в виде

,

Этот частный случай формулы Тейлора называют формулой Маклорена (Колин Маклорен (1698-1746) шотландский математик)

1. Разложение по формуле Маклорена некоторых элементарных функций

Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой-либо другой точке, естественно, при условии, что эти производные существуют.

Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.

Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10-20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.

Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.

Функция f(x) = ex. Находим: f(x) = ex, f(0) = 1, f(x) = ex, f(0) = 1,…, f(n)(x) = ex, f(n)(0) = 1.

Тогда:

Пример: Найдем значение числа е. В полученной выше формуле положим х = 1.

Для 8 членов разложения: e = 2,71827876984127003.

Для 10 членов разложения: e = 2,71828180114638451

Для 100 членов разложения: e = 2,71828182845904553

Как видно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.

Функция f(x) = sinx. Получаем f(x) = sinx; f(0) = 0, f(x) = cosx = sin(x + /2); f(0) = 1;

f(x) = –sinx = sin(x + 2/2); f(0) = 0; f(x) = –cosx = sin(x + 3/2); f(0)=–1;

………………………………………… f(n)(x) = sin(x + n/2); f(n)(0) = sin(n/2);

f(n+1)(x) = sin(x + (n + 1)/2); f(n+1)() = sin( + (n + 1)/2);

Функция f(x) = cosx. Для функции cosx, применив аналогичные преобразования, получим:

Функция f(x) = (1 + x) ( - действительное число).

……….

Тогда:

Если в полученной формуле принять = n, где n – натуральное число и f(n+1)(x)=0, то Rn+1 = 0, тогда

Получилась формула, известная как бином Ньютона.

Функция f(x) = ln(1 + x). Получаем: f(x) = ln(1 + x); f(0) = 0; f(x) = ;

Таким образом:

,

Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности.

Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

В дальнейшем будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.

ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ

Теорема Ролля. Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка с, a < с < b, в которой производная функции f(x) равная нулю: f(с) = 0.

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка с такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование, по крайней мере, одной такой точки.

Замечание. Если внутри [a; b] найдется хотя бы одна точка, в которой производная функции f(x) не существует, то утверждение теоремы может оказаться неверным.

Теорема Ролля имеет несколько следствий:

1˚. Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем

f(a) = f(b) = 0, то существует по крайней мере одна точка с, a < с < b, такая, что f(с) = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

2˚. Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n – 1)-го порядка и n раз обращается в нуль, то существует, по крайней мере, одна точка интервала, в котором производная (n – 1)-го порядка равна нулю.

Теорема Лагранжа (Жозеф Луи Лагранж (1736–1813) французский математик). Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема во всех внутренних точках этого отрезка, то на интервале (а, b) найдется, по крайней мере, одна точка с (a < с < b), такая, что .

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.

Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.

Теорему Лагранжа геометрически можно пояснить так. Рассмотрим график функции y = f(x), удовлетворяющий условиям теоремы, и соединим концы графика на [a; b] хордой AB. Отношение равно угловому коэффициенту хорды АВ, а f'(c) есть угловой коэффициент касательной. Следовательно, теорема утверждает, что на графике функции y = f(x) найдется хотя бы одна точка, в которой касательная к графику параллельна хорде, соединяющей концы дуги.

Замечания. 1. Все условия теоремы существенны.

2. Выражение называется формулой Лагранжа или формулой конечных приращений.

Теорема Коши ( Коши (1789-1857) французский математик). Если f(x) и g(x) – две функции, непрерывные на [a; b] и дифференцируемые внутри него, причем g'(x) ≠ 0 при всех x  (a; b), то внутри отрезка [a; b] найдется, хотя бы одна, точка c  (a; b), что

.

Эта формула называется обобщенной формулой конечных приращений. Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке с.

Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка с для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это – очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы.

Замечание. Рассмотренная выше теорема Лагранжа является частным случаем (при g(x) = x) теоремы Коши.

Все эти теоремы применяются для доказательства самых разных теорем.

Теорема Коши широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.

ПРАВИЛО ЛОПИТАЛЯ

Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (правило Лопиталя). Пусть функции f(x) и g(x) определены и дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a; g(x) ≠ 0 в этой окрестности и пусть или . Тогда предел отношения функций при ха равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует (1)

Коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание. Формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных (1 + cosx)/1 = 1+ cos x при x → ∞ не стремится ни к какому пределу.

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности0/0 или ∞/∞, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]