Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология зачет третий семестр.docx
Скачиваний:
60
Добавлен:
19.12.2018
Размер:
100.22 Кб
Скачать

5. Физико-химические механизмы возникновения потенциала действия

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

1) локальный ответ;

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Локальный ответ.

Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.

Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

Высоковольтный пиковый потенциал (спайк).

Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

1) восходящей части – фазы деполяризации;

2) нисходящей части – фазы реполяризации.

Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

Действие электрического тока на возбудимые ткани

Электрический ток широко используется в экспериментальной физиологии при изучении характеристик возбудимых тканей, в клинической практике для диагностики и лечебного воздействия, поэтому необходимо рассмотреть механизмы воздействия электри­ческого тока на возбудимые ткани. Реакция возбудимой ткани за­висит от формы тока (постоянный, переменный или импульсный), продолжительности действия тока, крутизны нарастания (изменения) амплитуды тока.

Эффект воздействия определяется не только абсолютным значе­нием тока, но и плотностью тока под стимулирующим электродом. Плотность тока определяется отношением величины тока, протека­ющего по цепи, к величине площади электрода, поэтому при монополярном раздражении площадь активного электрода всегда мень­ше пассивного.

Постоянный ток. При кратковременном пропускании подпорогового постоянного электрического тока изменяется возбудимость ткани под стимулирующими электродами. Микроэлектродные исследования показали, что под катодом происходит деполяризация клеточной мем­браны, под анодом—гиперполяризация (рис. 2.14, А). В первом случае будет уменьшаться разность между критическим потенциалом и мем­бранным потенциалом, т. е. возбудимость ткани под катодом увели­чивается. Под анодом происходят противоположные явления (рис. 2.14, Г), т. е. возбудимость уменьшается. Если мембрана отвечает пас­сивным сдвигом потенциала, то говорят об электротонических сдви­гах, или электротоне. При кратковременных электротонических сдви­гах значение критического потенциала не изменяется.

Поскольку практически у всех возбудимых клеток длина клетки превышает ее диаметр, электротонические потенциалы распределя­ются неравномерно. В точке локализации стимулирующего электрода сдвиг потенциала происходит очень быстро и временные параметры определяются величиной емкости мембраны. В удаленных участках мембраны ток проходит не только через мембрану, но и преодолевает продольное сопротивление внутренней среды. Электротонический по­тенциал падает экспоненциально с увеличением длины, а расстояние, на котором он падает в 1/е раз (до 37%), называют константой длины (λ).

При сравнительно большой продолжительности действия подпорогового тока изменяется не только мембранный потенциал, но и значение критического потенциала. При этом под катодом проис­ходит смещение уровня критического потенциала вверх (рис. 2.14, Б), что свидетельствует об инактивации  натриевых каналов.  Таким образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбуди­мости при длительном действии подпорогового раздражителя назы­вается аккомодацией. При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.

Скорость нарастания интенсивности раздражителя имеет суще­ственное значение при определении возбудимой ткани, поэтому чаще всего используют импульсы прямоугольной формы (импульс тока прямоугольной формы имеет максимальную крутизну нараста­ния). Замедление скорости изменения амплитуды раздражителя при­водит к тому, что происходит инактивация натриевых каналов вследствие постепенной деполяризации клеточной мембраны, а сле­довательно, к падению возбудимости.

Увеличение силы стимула до порогового значения приводит к генерации потенциала действия

Под анодом при действии сильного тока происходит изменение уровня критического потенциала, в противоположном направле­нии — вниз (рис. 2.14, Д). При этом уменьшается разность меж­ду критическим потенциалом и мембранным потенциалом, т. е. возбудимость под анодом при длительном действии тока повыша­ется.

Очевидно, что увеличение значения тока до пороговой величины приведет к тому, что возбуждение будет возникать под катодом при замыкании цепи. Следует подчеркнуть, что этот эффект может быть выявлен в случае продолжительного действия электрического тока. При действии достаточно сильного тока смещение критического потенциала под анодом может быть весьма существенным и достигать первоначального значения мембранного потенциала. Выключение тока приведет к тому, что гиперполяризация мембраны исчезнет, мембранный потенциал вернется к первоначальному значению, а это соответствует величине критического потенциала, т. е. возникает анодно-размыкательное возбуждение.

Изменение возбудимости и возникновение возбуждения под ка­тодом при замыкании и анодом при размыкании носит название закона полярного действия тока. Экспериментальное подтвержде­ние этой зависимости впервые было получено Пфлюгером еще в прошлом веке.

Как указывалось выше, существует определенное соотношение между временем действия раздражителя и его амплитудой. Эта зависимость в графическом выражении получила название кривой «сила—длительность» (рис. 2.15). Иногда по имени авторов ее на­зывают кривой Гоорвега—Вейса—Лапика. На этой кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от про­должительности времени, в течение которого действует этот раз­дражитель, а минимальная величина тока, вызывающая возбужде­ние, получила название порога раздражения, или реобазы. Величина реобазы определяется разностью между критическим потенциалом и мембранным потенциалом покоя.

С другой стороны, раздражитель должен действовать не меньше определенного времени. Уменьшение времени действия раздражи­теля ниже критического значения приводит к тому, что раздражитель любой интенсивности не оказывает эффекта. Для характеристики возбудимости ткани по времени ввели понятие порога времени — минимальное (полезное) время, в течение которого должен действовать раздражитель пороговой силы с тем, чтобы вызвать возбуждение (отрезок АС на рис. 2.15).

Порог времени определяется емкостной и резистивной характе­ристикой клеточной мембраны, т. е. постоянной временя T=RC.

В связи с тем что величина реобазы может изменяться, особенно в естественных условиях, и это может привести к значительной погреш­ности в определении порога времени, Лапик ввел понятие хронаксии для характеристики временных свойств клеточных мембран. Хронаксия — время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение. Использование этого критерия позволяет точно измерить временные характеристики воз­будимых структур, поскольку измерение происходит на крутом изгибе гиперболы

Хронаксиметрия используется при оценке функционального со­стояния нервно-мышечной системы у человека. При ее органических поражениях величина хронаксии и реобазы нервов и мышц значи­тельно возрастает.

Таким образом, при оценке степени возбудимости возбудимых структур используют количественные характеристики раздражителя — амплитуду, продолжительность действия, скорость нарастания амплитуды. Следовательно, количественная оценка физиологических свойств возбудимой ткани производится опосредованно по характеристикам раздражителя.

Переменный ток. Эффективность действия переменного тока определяется не только амплитудой, продолжительностью воздействия, но и частотой. При этом низкочастотный переменный ток, например частотой 50 Гц (сетевой), представляет наибольшую опасность при прохождении через область сердца. В первую очередь это обусловлено тем, что при низких частотах возможно попадание очередного стимула в фазу повышенной уязвимости миокарда (см. главу 7) и возникновение фибрилляции желудочков сердца. Действие тока частотой выше 10 кГц представляет меньшую опасность, поскольку длительность полупериода составляет 0,05 мс. При такой длительности импульса мембрана клеток вследствие своих емкостных свойств не успевает деполяризоваться до критического уровня. Токи большей частоты вызывают, как правило, тепловой эффект.

  1. Строение клеточной мембраны, мышц и нервов. Ионная асимметрия, ионные каналы и ионный насос. История открытия биопотенциалов (опыты Гальвании и Матеуччи). Мембранный птенциал покоя, его величина.

    Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова

Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:

а) пресинаптическое в аксо-аксональном синапсе;

б) постсинаптическое в аксодендрическом синапсе.

2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:

а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

б) пессимальное, возникающее при высокой частоте раздражения;

в) парабиотическое, возникающее при сильно и длительно действующем раздражении;

г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

д) торможение по принципу отрицательной индукции;

е) торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.

Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

  1. Законы проведения возбуждения по нервному волокну. Проведение возбуждения по мяктному и безмякотному нервному волокну. Понятие лабильности. Строение и классификация синапсов. Особенности проведения возбуждения через синапс.

    Физиологические свойства нервов и нервных волокон