Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Untitled1.doc
Скачиваний:
1
Добавлен:
07.12.2018
Размер:
493.06 Кб
Скачать

ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Введение. Основные понятия и определения.

§1. Аксиоматика линейных пространств.

Определение. Линейным пространством L = {a,b,c,…} называется множество, относительно элементов которого определены операции сложения и умножения на число, причем результаты этих операций принадлежат этому же множеству (говорят, что L замкнуто относительно операций сложения и умножения на число): .

(Элементы линейных пространств также будем называть векторами)

Для эти операции удовлетворяют следующим условиям:

1. a + b = b + a (коммутативность сложения).

2. (a + b) + c = a + (b + c) (ассоциативность сложения).

3..

4.

5. 1·а = а.

6.

7. (α + β)а = αа + βа (дистрибутивность).

8. α(а + b) = αa + αb (дистрибутивность).

Перечисленные свойства, обычно, называют аксиомами. Имеют место теоремы:

Теорема 1. Нулевой элемент – единственен.

{От противного: 01,02; 01+02=01 и 02+01=02 (акс. (3)). Из акс.(1) следует: 01=02}

Теорема 2. противоположный элемент – единственен.

{Пусть для }

Теорема 3. 0·а = 0.

{}

Теорема 4.

{}

Примеры.

§2. Линейно зависимые и линейно независимые системы элементов.

Определение 1. Сумма называется линейной комбинацией элементов а1, а2,…,аn с коэффициентами λk .

Определение 2. Система элементов линейного пространства {a1,…,an} называется линейно зависимой, если найдутся коэффициенты λ1,…,λn не все равные нулю, линейная комбинация с которыми равна нулю, т.е.

Определение 3. Система элементов линейного пространства {a1,…,an} называется линейно

независимой, если ее линейная комбинация равна нулю только с нулевыми коэффициентами:

Имеют место несколько простых утверждений.

Теорема 1 (необходимое и достаточное условие линейной зависимости). a1,…,an – линейно зависима когда хотя бы один из элементов является линейной комбинацией остальных.

{1.(необходимость: {ak} – л.з. ): . Пусть, для определенности, а1 – линейная комбинация остальных.

2.(достаточность: am – л.к.): }

Теорема 2. Если один из элементов системы равен нулю, то вся система линейно зависима.

{}

Теорема 3. Если подсистема линейно зависима, то и вся система линейно зависима.

{}

Примеры.

1) 2)

3) {f1 = 1, f2 = x, f3 = x2 } – линейно независимы.

§3. Базис. Размерность. Координаты.

Определение 1. Базисом линейного пространства L называется система элементов принадлежащих L, удовлетворяющая двум условиям:

1) Система линейно независима.

2) Любой элемент L линейно выражается через базисные (т.е. является линейной комбинацией элементов ):

Примеры. Базис на плоскости (V2 – 2 неколлинеарных вектора), в пространстве (V3 – 3 некомпланарных вектора), в пространстве Rn (канонический базис), в пространстве многочленов степени ≤ n (1,х,х2,…,хn).

Теорема 1. Коэффициенты разложения по базису – единственны.

{Пусть }

Определение 2. Координатами элемента линейного пространства в некотором базисе называются коэффициенты разложения по этому базису.

(В силу Т.1 это определение корректно)

Будем писать: .

В дальнейшем, по умолчанию, будем считать вектор вектором – столбцом, в противном случае будем писать строку координат в явном виде: либо как

Теорема 2. При сложении векторов их координаты складываются:

{}

Теорема 3. При умножении вектора на число его координаты умножаются на это число:

λа = (λα1,…,λαn). {}

Определение 3. Размерностью линейного пространства L (обозначается dimL) называется максимальное число линейно независимых элементов этого пространства.

Если такого числа не существует – пространство называется бесконечномерным.

Теорема 4. Размерность линейного пространства равна числу базисных векторов. {б/д}

Отсюда, в частности, следует, что все базисы одного пространства состоят из одинакового числа векторов.

Примеры. V2 ; V3 ; Rn.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]