Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ ОТВЕТЫ.doc
Скачиваний:
7
Добавлен:
06.12.2018
Размер:
768 Кб
Скачать

9. Коэффиценты тяжести и частоты при анализе травматизма.

Статистический метод заключается в определении коэффициентов частоты (КЧ) и тяжести травматизма (КТ).

Коэффициент частоты травматизма показывает число несчастных случаев на каждую 1000 работающих. Его вычисляют по формуле

 

H x 1000

 

КЧ

=

,

 

C

 

 где Н – число несчастных случаев за отчетный период;

С – среднесписочное число работающих в данном цехе или на предприятии.

Этот коэффициент позволяет определить только частоту несчастных случаев на различных предприятиях, в организациях и т.п. Однако несчастные случаи далеко не одинаковы по тяжести. Поэтому для более объективного сравнения состояния охраны труда на различных предприятиях вычисляют еще и коэффициент тяжести травматизма по следующей формуле:

 

P

 

КT

=

,

 

H

 

 где Р – число рабочих дней, потерянных во время нетрудоспособности из-за несчастных случаев;

Н – число несчастных случаев, по которым закрыты листы нетрудоспособности за отчетный период. Не учитываются н.с., связанные с естественной смертью, самоубийством и преступлением.

Углубленно изучают травматизм, используя технические методы исследования, позволяющие делить несчастные случаи по участкам производства, по профессиям, стажу работы и т.д. Чаще всего применяют групповой, топографический и монографический методы исследования.

10. Аксиома о потенциальной опасности взаимодействия человека со средой обитания.

В системе БЖД существует аксиома о потенциальной опасности. Это основополагающий постулат БЖД, который гласит: "Потенциальная опасность является универсальным свойством процесса взаимодействия человека со средой обитания на всех этапах его жизненного цикла". Аксиома о потенциальной опасности предопределяет, что все действия человека и компоненты среды обитания, прежде всего технические средства, кроме многих положительных свойств обладают способностью генерировать опасные и вредные факторы. При этом любое новое позитивное действие или результат неизбежно сопровождаются возникновением новой потенциальной опасности или группы опасностей.

11. Опасные факторы среды обитания человека.

12. Вредные факторы среды обитания человека.

Вредные факторы-при длительном воздействии на человека наносит ущерб здоровью (у работников - проф. заболеваний)

Опасные факторы – действует кратковременно или долговременно, вызывает травму или гибель человека.

Вредные факторы: запыленность и загазованность воздуха; шум; вибрации; электромагнитные поля; ионизирующие излучения; повышенные и пониженные атмосферные параметры( температура, влажность, подвижность воздуха, давление); недостаточное и неправильное освещение; монотонность деятельности; тяжелый физический труд; токсичные вещества; загрязненные вода и продукты питания и др.

Опасные факторы: огонь, ударная волна, горячие и переохлажденные поверхности; электрический ток; транспортные средства и подвижные части машин; отравляющие вещества; острые и падающие предметы; лазерное излучение; острое ионизирующее облучение и др.

Негативные факторы в быту: воздух, загрязненный продуктами сгорания природного газа, выбросами ТЭЦ, промышленных предприятий, автотранспорта и мусоросжигающих устройств; вода с избыточным содержанием вредных примесей; недоброкачественная пища; шум; инфразвук; вибрации; электромагнитные поля от синтетических материалов, бытовых приборов, телевизоров, дисплеев, ЛЭП; медикаменты при избыточном и неправильном их применении; алкоголь; табачный дым; бактерии; естественный фон и другие факторы. Опасные и вредные факторы, обусловленные деятельностью человека и продуктами его труда, называются антропогенными.

13.

Оценка и нормирование рабочей нагрузки и условий труда (УТ) проводятся применительно к различным формам трудовой деятельности. Самые общие формы - физический и умственный труд в своей основе имеют четкое преобладание физического или умственного компонента работы. Более детальная классификация включает следующие 5 форм [5]: 1) формы труда, требующие значительной мышечной активности и высоких (17...25 МДж или 4000...6000 и выше ккал в сутки) энергозатрат (ЭЗ); 2) групповые и конвейерные формы труда с однообразными операциями в заданных темпе и ритме (монотонный труд); 3) механизированный труд с Э3 12.5...17 МДж или 3000...4000 ккал в сутки; 4) автоматизированный труд; 5) формы труда со значительными ограничениями двигательной активности (гипокинезией) и ЭЗ 10…11,7 МДж или 2000...2400 ккал в сутки. Уровень физической нагрузки определяет тяжесть труда, нервно-психической - его напряженность. Особые формы нагрузок создаются воздействием вредных и опасных факторов на РМ (вредность и опасность труда). В сумме тяжесть, напряженность, вредность и опасность труда определяют психофизиологическую цену деятельности, затраты организма. Нормирование рабочей нагрузки заключается в установлении нормативов для факторов, отделяющих тяжесть, напряженность, вредность и опасность труда. СН 4088-86 и ГОСТ 12.1.005-88 выделяют следующие категорий тяжести труда по ЭЗ:

КАТЕГОРИИ ТЯЖЕСТИ ТРУДА Тяжесть труда характеризует совокупное воздействие всех элементов составляющих условия труда, на работоспособность человека, его здоровье, жизнедеятельность и восстановление рабочей силы. Понятие тяжести труда одинаково применимо как к умственному, так и физическому труду.

О степени тяжести труда можно судить по реакциям и изменениям в организме человека, которые служат показателями качества условий труда.

Существует шесть категорий тяжести труда, которым соответствуют шесть групп условий труда.

При этой классификации любые данные, характеризующие функциональное состояние человека, позволяют установить категорию тяжести труда. Методика количественной оценки тяжести труда позволяет с достаточной для практики точностью установить категорию тяжести труда, имея представленные в отвлеченных числах – баллах, данные, характеризующие условия труда.

Характеристика категорий тяжести труда:

1-ая категория. Работы, выполняемые при оптимальных условиях внешней производственной среды и при оптимальной величине физической, умственной и нервно-эмоциональной нагрузки. Такие условия у практически здоровых людей способствует улучшению самочувствия, достижению высокой работоспособности и производительности труда. Реакция организма свидетельствует об оптимальном варианте нормального функционирования.

2-ая категория. Работы, выполняемые в условиях, когда ПДК и ПДУ вредных и опасных производственных факторов не превышающих требований нормативно-технических документов. При этом работоспособность не нарушается, отклонений в состоянии здоровья, связанных с профессиональной деятельностью, не наблюдается в течение всего периода трудовой деятельности человека.

3-ья категория. Работы, выполняемые в условиях, при которых у практически здоровых людей возникают реакции, свойственные пограничному состоянию организма. Наблюдается некоторое снижение производственных показателей. Улучшение условий труда и отдых сравнительно быстро устраняют отрицательные последствия.

4-ая категория. Работы, при которых воздействие опасных и вредных факторов приводит к формировании. Более глубокого пограничного состояния у практически здоровых людей. Большинство физиологических состояний при этом ухудшается, особенно в конце рабочих периодов. Появляются типичные производственно обусловленные состояния предзаболевания.

5-ая категория. Работы, при которых в результате весьма неблагоприятных условий труда в конце рабочего периода формируются реакции, характерные для патологического функционального состояния организма у практически здоровых людей, исчезающие у большинства работников после полноценного отдыха. Однако, у некоторых лиц они могут перейти в производственные и профессиональные заболевания.

6-ая категория. Работы, выполняемые в особо неблагоприятных условиях труда. При этом патологические реакции развиваются очень быстро, могут иметь необратимый характер и нередко сопровождаются тяжелыми нарушениями функций жизненно важных органов.

14.

Влияние параметров микроклимата на самочувствие человека

Параметры микроклимата оказывают непосредственное влияние на тепловое состояние человека. Например, понижение температуры и повышение скорости движения воздуха, способствует усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. Повышение скорости движения воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота.

При повышении температуры воздуха возникают обратные явления.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при температурах окружающего воздуха более 30С так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек их пересыхания и растрескивания, а затем и к загрязнению болезнетворными микробами. Поэтому, при длительном пребывании людей в закрытых помещениях, рекомендуется ограничиваться относительной влажностью 30…70%

При обильном потовыделении масса организма человека уменьшается. Считается допустимым для человека снижение его массы на 2…3% путем испарения влаги – обезвоживание организма.

Вместе с потом организм теряет значительное количество минеральных солей. Для восстановления водного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной газированной водой.

Длительное воздействие высокой температуры особенно с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня – гипертермии.

Производственные процессы ,выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма – гипотермии.

Параметры микроклимата оказывают существенное влияние на производительность труда.

В горячих цехах промышленных предприятий большинство технологических процессов протекают при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. При температуре до 500°С с нагретой поверхности излучаются тепловые (инфракрасные) лучи, а при более высоких температурах наряду с возрастанием инфракрасного излучения появляются видимые световые и ультрафиолетовые лучи.

Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насыщенность крови, понижается венозное давление, замедляется кровоток и как следствие наступает нарушение деятельности сердечно-сосудистой и нервной систем.

По характеру воздействия на организм человека инфракрасные лучи подразделяют на коротковолновые и длинноволновые. Тепловые излучения коротковолнового диапазона глубоко поникают в ткани и разогревают их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделение, а при длительном облучении – тепловой удар. Длинноволновые лучи глубоко в ткани не проникают и поглощаются в основном в эпидермисе кожи. Они могут вызывать ожоги кожи и глаз (катаракта глаза).

3. Терморегуляция организма человека

Основными параметрами, обеспечивающими процесс теплообмена с окружающей средой являются параметры микроклимата. В естественных условиях эти параметры изменяются в существенных пределах.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5°С.

Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем, путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов.

Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов.

Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения влаги.

Терморегуляция организма осуществляется одновременно всеми способами.

Параметры микроклимата воздушной среды, которые обуславливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом, и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.

15.

Известным исследователем параметров комфорта и качества воздушной среды Оле Фангером предложена формула теплового баланса между человеческим телом и окружающей средой. В этой формуле принимается за основу теплообмен человека, находящегося в покое, в состоянии температурного баланса с внешней средой. при этом безразлично, какова точно его температура. В этих условиях вырабатываемое количество тепла равног теплу, отводимому во внешнюю среду, из чего следует:

M = W + Qд + Qk

где

M - количество тепла, вырабатываемого организмом, Вт/кв.м;

W - объем производимой механической работы, Вт/кв.м;

- общее количество тепла, выделяемого при дыхании, Вт/кв.м;

- общее количество тепла, отводимого через кожу, Вт/кв.м.

Количество отводимого от человеческого тепла зависит нескольких переменных параметров, и главным образом, от следующих:

разницы температур (положительной или отрицательной) между телом и окружающей воздушной средой;

потерь (или получения) тепла от окружающих стен;

кожных испарений (охлаждения при испарении);

явных и скрытых потерь тепла при дыхании, соответственно за счет теплопроводности и испарения.

Теплота, выделяемая организмом человека, передается в окружающую среду через кожный покров радиационным теплообменом. конвекцией, теплопроводностью (явная теплота) и испранением (скрытая теплота), а также путем выдыхания теплого воздуха.

Радиационный обмен происходит между человеком и поверхностями ограждений, его величина и направление зависят от температуры этих поверхностей. Теплота, передаваемая конвекцией и теплопроводностью, зависит от температуры, влажности и скорости воздуха, вида и теплопроводности одежды.

Испарение влаги с поверхности тела человека (скрытый теплоотвод) осуществляется за счет разности парциальных давлений водяных паров в насыщенном слое у поверхности тела и в воздухе помещения. При этом расходуется теплоат (энергия) организма, идущая на испарения влаги. Теплоотдача испарением будет всегда больше, чем ниже значение относительной влажности при данной температуре воздуха в помещении. Уменьшение относительной влажности приводит к увеличению разности парциальных давлений пара у поверхности тела человека и в окружающем воздухе и тем самым к увеличению испарения.

Комфортные кондиции воздушной среды могут иметь различные значения и зависеть главным образом от интенсивности труда, совершаемого человеком, и его одежды.

В зависимости от состояния организма (сон, отдых, умственная работа, мускульная работа различной интенсивности) и параметров окружающей воздушной среды каждый человек в течении часа выделяет 330-1050 кДж теплоты, 40-415 г влаги и 18-36 л углекислого газа.

При постоянной температуре воздуха и поверхностей ограждений с ростом физической нагрузки на организм человека увеличиваются общие тепловыделения и доля теплоты, отводимой испарением влаги. При неизменной нагрузке и повышении температуры окружающей среды уменьшается доля явного теплоотвода, а теплоотвод испарением возрастает при практически неизменных общих тепловыделениях.

16.

ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" и СанПиН 2.24.548-96 "Гигиенические требования к микроклимату производственных помещений". Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10oС и выше, холодный -ниже +10oС.

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50% и более работающих в соответствующем помещении.

К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140... 174 Вт).

К работам средней тяжести (категория, II) относят работы с затратой энергии 175...232 Вт (категория IIа) и 233. ..290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIб - работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.).

К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты - разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении.

Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты - это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50 % поверхности человека и более, 70 Вт/м2 - при облучении 25...50 % поверхности и 100 Вт/м2 - при облучении не более 25 % поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005-88 могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры - обычными системами вентиляции и отопления.

Параметры микроклимата. Нормирование микроклимата.

В соответствие с ГОСТ 12.005 нормируемыми параметрами микроклимата являются: температура, влажность, подвижность воздуха рабочей зоны. Оптимальные параметры микроклимата во всех типах учебных помещений с ПЭВМ

Температура, °С

Относительная влажность, %

Абсолютная влажность, г/м3

Скорость движения воздуха, м/с

19

62

10

<0.1

20

58

10

<0.1

21

55

10

<0,1

17.

аэрация (франц. aeration от греч. aer воздух) -- 1) естественное поступление или принудительное введение атмосферного воздуха в различные среды; 2) естественная вентиляция помещений, регулируемая изменением площади проемов в ограждениях.

Регулируемый воздухообмен (аэрация) осуществляется с помощью фрамуг, через которые поступает наружный воздух, а внутренний, более теплый воздух, выходит через вытяжные фонари, устанавливаемые на крыше здания. Бесканальная аэрация может осуществляться при помощи отверстий в стенах и потолке. Канальная аэрация осуществляется при помощи каналов, сооружаемых в стенах здания. Для усиления движения воздуха на крыше здания устанавливают камеры - патрубки(дефлекторы), располагаемые на верхней части вытяжной трубы или шахты(в которых под действием ветра возникает тяга воздуха).

Достоинство аэрации – отсутствие механических вентиляторов, значительно дешевле механических систем вентиляции.

Недостаток аэрации – снижается эффективность в летнее время, не происходит очистки воздуха, возможны сквозняки.

Для очистки воздуха применяют пылеуловители (циклоны, электрофильтры, фильтры из пористого фильтрующего материала, туманоуловители, адсорберы, каталитическое дожигание и т.д.).

18.

Механическая вентиляция в производственных и других помещениях чаще реализуется о помощью вентиляторов. Ее элементами являются вентилятор, магистральные, приточные и вытяжные воздуховоды, воздухозаборное устройство и устройство выброса использованного воздуха, а также устройства по нагреванию и очистке воздуха. По развиваемому давлению различают вентиляторы низкого (до 1 кПа), среднего (до 3 кПа) и высокого (до 12 кПа) давления. В вентсистемах применяются вентиляторы низкого и среднего давления, а в установках пневмотранспорта, для дутья и других технологических нужд - вентиляторы высокого давления. По своей конструкция вентиляторы подразделяют на центробежные и осевые.

Их размер определятся номером вентилятора (от №1 до № 20), который представляет собой диаметр его колеса, выраженный в сотнях миллиметров (например, № 3 - 300 мм, № 20 - 2000 мм). Осевые вентиляторы развивают небольшое давление (до 0,35 кПа), так как с повышением последнего резко увеличивается шум вентилятора. Их применяют при отсутствии воздуховодов

(например, в окне, стене) или когда их длина незначительна. Тип и размеры вентилятора выбирают в зависимости от необходимой подачи, давления и условий среды, а также состава перемещаемого воздуха. Во взрывоопасных помещениях надлежит применять эжекторы или взрывобезопасные вентиляторы, лопасти и внутренняя поверхность которых выполнена из меди, алюминия а других металлов, не дающих искры при ударах. КПД центробежного вентилятора равен 0,5...0,6, осевого - 0,5...0,7, а эжектора - до 0,25. Расчет механической вентиляции проводят в три этапа: 1) определяют потребное количество приточного воздуха для обеспечения требуемой воздушной среды в помещениях ( Lп, м3/ч) по формулам приложения 17 СНиП 2.04.05-91; 2) находят потребный напор ( Нп, Па) вентилятора для перемещения по вентсети Lп ; 3) выбирают по каталогу вентилятор, обеспечивающий Lп и Нп, и определяют (при необходимости) установочную мощность, кВт, электродвигателя Ny=1,1LbHb/?b?п, где Lb и Hb - принятые соответственно производительность, м3/ч, и напор, Па, вентилятора; ?b и ?п -кпд соответственно вентилятора (по графику) и передачи (непосредственная - 1,0; соединение муфтой - 0,98; клиноременная - 0,95 и плоскоременная - 0,90). По значению Ny подбирают по каталогу соответствующий тип электродвигателя, его мощность и т.д. Затем решают вопросы размещения вентсистемы в помещении и режима ее работы (детально см. практикум [6] ). Кондиционирование воздуха (КВ) - это автоматическое поддержание в закрытых помещениях (кабинах) всех или отдельных параметров воздуха ( t, V, ? и чистоты воздуха) с целью обеспечения оптимальных микроклиматических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса и обеспечения сохранности ценностей культуры. Для этого применяют специальные агрегаты - кондиционеры. Они обеспечивают прием

наружного и рециркуляционного воздуха, его фильтрацию, охлаждение, подогрев, осушку, увлажнение, перемещение и другие процессы. Работа кондиционера, как правило, автоматизирована. По способу приготовления и раздачи воздуха кондиционеры подразделяются на центральные и местные. Первые располагают вне обслуживаемых помещений и раздачу воздуха (от 30 до 250 тыс. м3/ч) осуществляют по системе воздуховодов; вторые - в обслуживаемых помещениях и раздача воздуха (не более 22,4 тыс. м3/ ч) осуществляют сосредоточенно, без воздуховодов. По холодоснабжению кондиционеры подразделяет на автономные и неавтономные. В первых холод вырабатывается встроенным холодоагрегатом, а в

неавтономных - снабжается централизованно. Центральные кондиционеры являются неавтономными (секционного или блочно-секционного типа), а местные - автономными (в виде одного шкафа). Существует два способа КВ - раздельный и совмещенный. При первом способе подготовку и подачу воздуха от кондиционера осуществляют раздельно в оборудование и в помещение с разными параметрами воздуха, а при втором способе - то же, но с одинаковыми параметрами воздуха. Согласно СНиП 2.04.05-91 КВ следует принимать: первого класса - для обеспечения метеоусловий, требующих для технологического процесса, при экономическом обосновании или в соответствии с требованиями НТД; второго класса - для обеспечения метеоусловий в пределах оптимальных норм или требуемых для технологических процессов; третьего класса - для обеспечения метеоусловий в пределах допустимых норм, если они не обеспечиваются вентиляцией в теплый период года без применения искусственного охлаждения

воздуха или оптимальных норм - при экономическом обосновании. Расчет систем КВ достаточно сложен (особенно центральных) и состоит из четырех этапов [8]: 1) выбор расчетных параметров наружного (см. параметры А или Б приложения 8 СНиП 2.04.05-91, руководствуясь пп.2.14...2.16 данного СНиП) и внутреннего (см. приложения 1, 2 и 5 этого СНиП или отраслевые НТД) воздуха для всех периодов года, а также определение вида и количества вредных выделений, избытков тепла в обслуживаемых помещениях; 2) на~ хождение потребного количества приточного воздуха ( Lп , м3 /ч) по формулам приложения № 17 СНиП 2.04.05-91 и определение полной производительности кондиционера, м3 /ч, Lk=KпLп , где Kп -коэффициент потерь воздуха, принимаемый в зависимости от класса воздуховода по табл. 1 данного СНиП; 3) выбор необходимой схемы воздухообмена в обслуживаемом помещении с учетом специфики работы оборудования, технологии и определение типа системы КВ, а также детальное описание ее работы; 4) расчет процессов обработки воздуха в кондиционере(ах) при различных периодах года в зависимости от принятой схемы воздухообмена, а также расчет и выбор различных элементов центрального кондиционера. Подбор местных кондиционеров производят упрощенно по каталожным данным их производительности по воздуху и холоду (детально см. практикум [6]). Согласно СНиП 2.04.05-91 системы вентиляции и воздушного отопления рекомендуется предусматривать: 1) отдельными для каждой группы помещений по взрывопожарной опасности, размещенных в пределах одного пожарного отсека; 2) общими для следующих помещений: а) жилых; б) общественных, административно-бытовых и производственных категорий Д (в любых сочетаниях); в) производственных одной из категорий А или Б, размещенных не более чем на 3 этажах; г) производственных одной из категорий В, Г или Д и других по п.п. 4.25 данного СНиП.

19.

Расчет воздухообмена для очистки воздуха

Потребный воздухообмен определяется по формуле:

, м3

где: L, м3/ч – потребный воздухообмен;

G, г/ч – количество вредных веществ, выделяющихся в воздух помещения;

xв, мг/м3 – предельно допустимая концентрация вредности в воздухе рабочей зоны помещения, согласно ГОСТ 12.1.005-88 по таблице 1 методического указания.

хн, мг/м3 – максимально возможная концентрация той же вредности в воздухе населенных мест по таблице 1 методического указания, согласно СН-3086-84.

Применяется также понятие кратности воздухообмена (n), которая показывает сколько раз в течение одного часа воздух полностью сменяется в помещении. Кратность воздухообмена определяется по формуле:

n = L/Vп , ч-1

где: Vп – внутренний объем помещения, м3 .

Согласно СН 245-71, кратность воздухообмена n 10 недопустима.

Определение воздухообмена при испарении растворителей и лаков.

Испарение растворителей и лаков обычно происходит при покраске различных изделий. Количество летучих растворителей, выделяющихся в воздухе помещений можно определить по следующей формуле:

, г/ч

где а, м2/ч – средняя производительность по покраске одного рабочего, составляющая при ручной покраске кистью, а=12 м2/ч; пульверизатором а=50 м2/ч;

А, г/м2 – расход лакокрасочных материалов;

m, % – процент летучих растворителей, содержащихся в лакокрасочных материалах;

n – число рабочих, одновременно занятых на покраске.

Определение потребного воздухообмена при пайке электронных схем.

В помещении два человека осуществляют пайку припоем ПОС-40 с производительностью по 100 контактов в час, который содержит С=0,4 доли объема свинца и 60% олова. Наиболее ядовиты аэрозоли (пары) свинца.

В процессе пайки из припоя испаряется до В=0,1% свинца, а на одну пайку расходуется 10мг припоя. При числе паек – N, количество выделяемых паров свинца определяется как:

, мг/ч.

Определение воздухообмена в жилых и общественных помещениях.

В жилых и общественных помещениях постоянным вредным выделением является выдыхаемая людьми углекислота (СО2).

Определение потребного воздухообмена производится по количеству углекислоты, выделяемой человеком и по допустимой ее концентрации.

Содержание углекислоты в атмосферном воздухе можно определить по химическому составу воздуха. Однако, учитывая повышенное содержание углекислоты в атмосфере населенных пунктов, следует принимать при расчете содержание СО2:

для сельских населенных пунктов – 0,33 л/м2

для малых городов (до 300тыс. жителей) – 0,4 л/м2

для больших городов (свыше 300тыс жителей) – 0,5 л/м2 .

Расчет потребного воздухообмена для удаления избыточного тепла.

Расчет потребного воздухообмена для удаления избыточного тепла производится по формуле:

, м3

где : L, м3/ч - потребный воздухообмен;

Qизб, ккал/ч - избыточное тепло;

 = 1.206 кг/м3 - удельная масса приточного воздуха;

c = 0,24 ккал/кг.град - теплоемкость воздуха;

t = t вых - t пр , oC , (9)

где : t вых, oC - температура уделяемого воздуха;

t пр, oC - температура приточного воздуха;

Величина t при расчетах выбирается в зависимости от теплонапряженности воздуха - Qн :

- при Qн  20 ккал/м3t = 6 oC;

- при Qн > 20 ккал/м3t = 8 oC;

ккал/м3*ч ,

где Vn, м3 – внутренний объем помещения.

Таким образом, для определения потребного воздухообмена необходимо определить количество избыточного тепла по формуле :

Qизб = Qоб + Qосв + Qл + Qр - Qотд , ккал/ч, (11)

где: Qоб, ккал/ч - тепло, выделяемое оборудованием;

Qосв, ккал/ч - тепло, выделяемое системой освещения;

Qл, ккал/ч - тепло, выделяемое людьми в помещении;

Qр, ккал/ч - тепло, вносимое за счет солнечной радиации;

Qотд, ккал/ч - теплоотдача естественным путем.

Определяем количество тепла, выделяемого оборудованием:

Qоб = 860 Роб  1 , ккал/ч, (12)

где: Y1 - коэффициент перехода тепла в помещение, зависящий от вида оборудования;

Роб, кВт - мощность, потребляемая оборудованием;

Роб = Рном Y2 Y3  Y4 , кВт, (13)

где: Рном, кВт - номинальная (установленная) мощность электрооборудования помещения;

Y2 – коэффициент использования установленной мощности, учитывающий превышение номинальной мощности над фактически необходимой;

Y3 – коэффициент загрузки, т.е. отношение величины среднего потребления мощности (во времени) к максимально необходимой;

Y4 – коэффициент одновременности работы оборудования.

При ориентировочных расчетах произведение всех четырех коэффициентов можно принимать равным Y1* Y2* Y3* Y4=0,25

Определяем количество тепла, выделяемого системой освещения.

Qосв = 860*Росв*α*β*cos(φ), ккал/ч

Где: α – коэффициент перевода электрической энергии в тепловую,

лампы накаливания α=0,92-0,97;

люминисцентные лампы α=0,46-0,48;

β – коэффициент одновременности работы (при работе всех

светильников β=1);

cos(φ) = 0,7 -0,8 – коэффициент мощности;

Росв , кВт – мощность осветительной установки

Определяем количество тепла, выделяемого находящимися в помещении людьми.

Qл = N*qл, ккал/ч

где: N – количество людей в помещении;

q, ккал/ч – тепловыделения одного человека (таблица 5).

Предположим, что категория тяжести работы – тяжёлая(III) и температура воздуха 25 оС IIа.

Определяем количество тепла, вносимого за счет солнечной радиации.

Qр = m*S*qост, ккал/ч

Где: m – количество окон;

S, м2 – площадь одного окна;

qост, ккал/ч – солнечная радиация через остекленную поверхность (таблица 7).

Пусть окна выходят на юго-восток, а широта = 65.

Определяем теплоотдачу, происходящую естественным путем.

Если нет дополнительных условий, то можно считать ориентировочно, что Qотд = Qр для холодного и переходного периодов года (среднесуточная температура наружного воздуха ниже +100С). Для теплого периода года (среднесуточная температура наружного воздуха выше +100С) принимаем Qотд = 0.

20.

Дурацкий вопрос по идиотскому предмету! Н6е могу ничего подходящего найти, там вроде бы должно быть то, что и в вентиляции.

21/

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорционально логарифму интенсивности стимула.

В ряде экспериментов, начиная с 1834, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, для различения яркости двух источников света необходимо, чтобы их яркость отличалась на 1/100 и т. д.

На основе этих наблюдений Г. Фехнер в 1860 сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя S:

где S0 — граничное значение интенсивности раздражителя: если S < S0, раздражитель совсем не ощущается.

Так, люстра в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в разы, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Например, если добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости. В то же время, одна лампочка, добавленная к люстре из двух лампочек, даёт значительный кажущийся прирост яркости.

Организм человека представляет собой единое целое, в котором строение и функции всех тканей, органов и систем органов взаимосвязаны. Изменение строения и функций любого органа и системы органов вызывает изменения строения и функций других органов.

Основным механизмом поддержания жизнедеятельности организма на относительно постоянном уровне является саморегуляция физиологических функций.

Генетическая управляющая система выступает регулятором всех метаболических реакций и процесса синтеза белка.

К совершенным гомеостатическим механизмам относятся процессы терморегуляции, постоянство состава крови, уровня сахара в крови, осмотического давления крови и другие.

Закрепившееся в процессе эволюционного развития состояние гомеостаза позволяет организму приспосабливаться к условиям окружающего мира. В процессе адаптации формируются признаки и свойства, которые оказываются наиболее выгодными и благодаря которым организм приобретает способность к существованию в конкретной среде обитания.

Адаптация - это врожденные и приобретенные виды приспособительной деятельности, которые обеспечиваются определенными физиологическими реакциями, происходящими на клеточном, органном, системном и организменном уровнях.

Адаптация организма к условиям среды может носить самый различный характер и затрагивать практически все стороны организма и жизнедеятельности человека. Говоря об адаптации учащихся и студентов к условиям обучения в образовательных учреждениях, выделяют несколько ее видов:

социальную (семейные взаимоотношения, жилищные условия, материальное обеспечение);

психофизиологическую (коммуникабельность, взаимоотношения с товарищами по группе и курсу, с преподавателями, личностные особенности, уровень притязаний, характер, психофизиологическая совместимость в коллективе);

к среде обитания (адекватная реакция организма на климат, температуру, влажность, газовый состав атмосферы и т.д.);

физиологическую (состояние учащихся, тип высшей нервной деятельности и др.).

Большое значение в процессе адаптации имеют индивидуальные особенности организма. Оптимизация процессов адаптации и высокий уровень функционирования организма происходят в случае, когда собственная организация индивида соответствует и согласуется с окружающими социальными и климатическими условиями.

Среди адаптивно-защитных механизмов организма особое место занимает иммунитет.

Иммунитет - это защитная способность организма противостоять болезнетворным микробам и вирусам, а также инородным телам и веществам. Результатом этой реакции является возникновение невосприимчивости организма к повторному воздействию этого же возбудителя.

22/

В настоящее время известно около 7 млн химических веществ и соединений (далее вещество), из которых 60 тыс. находят применение в деятельности человека. На международном рынке ежегодно появляется 500...1000 новых химических соединений и смесей.

Вредным называется вещество, которое при контакте с организмом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.

Химические вещества (органические, неорганические, элемент-органические) в зависимости от их практического использования классифицируются на:

— промышленные яды, используемые в производстве: например, органические растворители (дихлорэтан), топливо (пропан, бутан), красители (анилин);

— ядохимикаты, используемые в сельском хозяйстве: пестициды (гексахлоран), инсектициды (карбофос) и др.;

— лекарственные средства;

— бытовые химикаты, используемые в виде пищевых добавок (уксусная кислота), средства санитарии, личной гигиены, косметики и т.д.;

— биологические растительные и животные яды, которые содержатся в растениях и грибах (аконит, цикута), у животных и насекомых(змей, пчел, скорпионов);

— отравляющие вещества (ОВ): зарин, иприт, фосген и др.

 

Ядовитые свойства могут проявить все вещества, даже такие, как поваренная соль в больших дозах или кислород при повышенном давлении. Однако к ядам принято относить лишь те, которые свое вредное действие проявляют в обычных условиях и в относительно небольших количествах.

К промышленным ядам относится большая группа химических веществ и соединений, которые в виде сырья, промежуточных или готовых продуктов встречаются в производстве.

В организм промышленные химические вещества могут проникать через органы дыхания, желудочно-кишечный тракт и неповрежденную кожу. Однако основным путем поступления являются легкие. Помимо острых и хронических профессиональных интоксикаций промышленные яды могут быть причиной понижения устойчивости организма и повышенной общей заболеваемости.

Бытовые отравления чаще всего возникают при попадании яда в желудочно-кишечный тракт (ядохимикатов, бытовых химикатов, лекарственных веществ). Возможны острые отравления и заболевания при попадании яда непосредственно в кровь, например при укусах змеями, насекомыми, при инъекциях лекарственных веществ.

Токсическое действие вредных веществ характеризуется показателями токсикометрии, в соответствии с которыми вещества классифицируют на чрезвычайно токсичные, высокотоксичные, умеренно токсичные и малотоксичные. Эффект токсического действия различных веществ зависит от количества попавшего в организм вещества, его физических свойств, длительности поступления, химизма взаимодействия с биологическими средами (кровью, ферментами). Кроме того, эффект зависит от пола, возраста, индивидуальной чувствительности, путей поступления и выведения, распределения в организме, а также метеорологических условий и других сопутствующих факторов окружающей среды.

Общая токсикологическая классификация вредных веществ приведена в табл. 7.2.

Токсикологическая классификация вредных веществ

 Общее токсическое воздействие

Токсичные вещества

Нервно-паралитическое действие (бронхоспазм, удушье, судороги и параличи)

Кожно-резорбтивное действие (местные воспалительные и некротические изменения в сочетании с общетоксическими резорбтивными явлениями)

Общетоксическое действие (гипоксические судороги, кома, отек мозга, параличи)

Удушающее действие (токсический отек легких)

Слезоточивое и раздражающее действие (раздражение наружных слизистых оболочек)

Психотическое действие (нарушение психической активности, сознания)

Фосфорорганические инсектициды (хлорофос, карбофос, никотин, 0В и др.)

Дихлорэтан, гексахлоран, уксусная эссенция, мышьяк и его соединения, ртуть (сулема)

 

Синильная кислота и ее производные, угарный газ, алкоголь и его суррогаты, 0В

Оксиды азота, 0В

 

Пары крепких кислот и щелочей, хлорпикрин, 0В

 

Наркотики, атропин

 

Яды наряду с общей обладают избирательной токсичностью, т. е. они представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности выделяют яды:

— сердечные с преимущественным кардиотоксическим действием; к этой группе относят многие лекарственные препараты, растительные яды, соли металлов (бария, калия, кобальта, кадмия);

— нервные, вызывающие нарушение преимущественно психической активности (угарный газ, фосфорорганические соединения, алкоголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);

— печеночные, среди которых особо следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;

— почечные — соединения тяжелых металлов этилен гликоль, щавелевая кислота;

— кровяные — анилин и его производные, нитриты, мышьяковистый водород;

— легочные — оксиды азота, озон, фосген и др.

Показатели токсиметрии и критерии токсичности вредных веществ — это количественные показатели токсичности и опасности вредных веществ. Токсический эффект при действии различных доз и ' концентраций ядов может проявиться функциональными и структурными (патоморфологическими) изменениями или гибелью организма. В первом случае токсичность принято выражать в виде действующих, пороговых и недействующих доз и концентраций, во втором — в виде смертельных концентраций.

Смертельные, или летальные, дозы DL при введении в желудок или в организм другими путями или смертельные концентрации CL могут вызывать единичные случаи гибели (минимальные смертельные) или гибель всех организмов (абсолютно смертельные). В качестве показателей токсичности пользуются среднесмертельными дозами и концентрациями: DL50, CL50 — это показатели абсолютной токсичности. Средне смертельная концентрация вещества в воздухе CL50это концентрация вещества, вызывающая гибель 50 % подопытных животных при 2...4-часовом ингаляционном воздействии (мг/м3); среднесмертельная доза при введении в желудок (мг/кг) обозначается как DLж50, среднесмертельная доза при нанесении на кожу — DLK50.

Степень токсичности вещества определяется отношением 1/DL50 и l/CL50; чем меньше значения токсичности DL50 и CL50, тем выше степень токсичности.

Об опасности ядов можно судить также по значениям порогов вредного действия (однократного, хронического) и порога специфического действия.

Порог вредного действия (однократного или хронического) — это минимальная (пороговая) концентрация (доза) вещества, при воздействии которой в организме возникают изменения биологических показателей на организменном уровне, выходящие за пределы приспособительных реакций, или скрытая (временно компенсированная) патология. Порог однократного действия обозначается Limас, порог хронического Limch, порог специфического Limsp.

Опасность вещества — это вероятность возникновения неблагоприятных для здоровья эффектов в реальных условиях производства или применения химических соединений.

23/

Нормирование содержания вредных веществ в воздухе рабочей зоны

По ГОСТ 12.1.005 - 76 установлены предельно допустимые концентра-ции вредных веществ qпдк (мг/м3) в воздухе рабочей зоны производственных помещений. Вредные вещества по степени воздействия на организм чело-века подразделяются на следующие классы: 1-й - чрезвычайно опасные, 2-й - высокоопасные, 3-я - умеренно опасные, 4-й - малоопасные. В качестве при-мера в табл. 1 приведены нормативные данные для ряда веществ (всего нор-мируется более 700 веществ). Таблица 1.

Значения допустимых концентраций веществ.

ВеществоВеличина ПДК, мг/м3Класс опасностиАгрегатное со-стояние

Бериллий и его соединения / 0,001 / 1 /аэрозоль

Свинец /0,01 /1 /аэрозоль

Марганец /0,05 /1 /аэрозоль

Озон /0,1 /1 /пары и (или) газы

Хлор /1 /2 /пары и (или) газы

Соляная кислота/ 5 /2 /пары и (или) газы

Кремнеземсодержащие пыли /1 /3 /аэрозоль

Окись железа /4 - 6 /4 /аэрозоль

Окись углерода, аммиак /20/ 4 /пары и (или) газы

Топливный бензин /100 /4 /пары и (или) газы

Ацетон /200 /4 /пары и (или) газы