Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Доклад Теория слуха.doc
Скачиваний:
21
Добавлен:
02.12.2018
Размер:
491.52 Кб
Скачать

12 Основные теории слуха

Ученые давно пытались разгадать тайну возникновения слуховых ощущений. Путь к ней был непростой, исследователей подстерегали ошибки и разочарования, открытия и парадоксы. Иногда новые факты полностью перечеркивали полученные ранее, с тем чтобы в свое время также оказаться перечеркнутыми. Споры о механизмах звуковосприятия продолжаются и по сей день, окончательные выводы делать рано, поэтому мы вас познакомим только с гипотезами. Само слово «гипотеза» означает только предположение, она не претендует на то, чтобы быть единственно верным решением, окончательной теорией. Но без гипотез мы никогда не могли бы создать такой теории. Первым, кто попытался создать теорию слуха, был немецкий физик, математик, физиолог и психолог Герман Гельмгольц (1821...1884).

Наиболее сложные процессы происходят во внутреннем ухе. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения, непосредственное изучение которых затрудняется малой величиной колебаний, а также тем, что они скрыты от исследователя плотной капсулой лабиринта. Еще большие трудности возникают при изучении явлений, имеющих место при трансформации механической энергии в процесс нервного возбуждения в рецепторе, а также при изучении функции нервных проводников и центров. Разрешение этих вопросов находится в настоящее время еще в стадии накопления фактов, а пока для объяснения происходящих во внутреннем ухе процессов мы пользуемся предложенными в различное время гипотезами.

Любая теория слуха должна в первую очередь объяснить способность уха различать высоту, силу и тембр звуков. Кроме того, она должна достаточно удовлетворительно объяснить законы маскировки, ототопики и другие особенности функций звукового анализатора.

В 1863 г. Гельмгольц предложил резонансную теорию. Он считал, что в улитке происходят явления механического резонанса, в результате которого сложные звуки в ней разлагаются на простые тоны. То обстоятельство, что основная мембрана с ее эластическими волокнами, натянутыми в поперечном направлении, имеет разную ширину у основания и верхушки улитки (у основания — узкая, у верхушки — широкая), позволило Гельмгольцу считать ее образованием, разные участки которого способны резонировать на звуки неодинаковой высоты.

Теория Гельмгольца с гениальной простотой разъяснила основные свойства уха, то есть определение высоты, силы и тембра. Согласно резонансной теории, любой чистый тон имеет свой ограниченный участок на основной мембране.

Одиночный звук, по его мнению, раздражает строго определенные нервные волокна — именно те, которые снабжают соответствующий участок мембраны, и раздражение этих волокон ощущается как звук строго определенной высоты.

Таким образом, из теории Гельмгольца следует три основных вывода:

1) в улитке происходит первичный анализ звуков;

2) каждый простой звук имеет свой участок на основной мембране;

3) низкие звуки вызывают колебание участков основной мембраны у верхушки улитки, а высокие — у основания ее.

Несмотря на огромное количество новых фактов, полученных при изучении функции внутреннего уха, эти три вывода сохраняют свое значение до настоящего времени.

Таким образом резонансная теория Гельмгольца (1868 год) звучит следующим образом: базальная мембрана кортиева органа резонирует на гидромеханические изменения перилимфы. Колебания базальной мембраны передаются через фаланговые клетки на волосковые, а оттуда – на нейроны.

Американский исследователь Халавел Дэвис, вживляя микроэлектроды в улитку кошки, регистрировал электрические потенциалы, возникающие в улитке. На основании своих наблюдений он создал собственную электрофизиологическую теорию слуха. Согласно его теории каждый волосок волосковых клеток кортиева органа подобен пьезоэлектрическому кристаллу. Как известно, эти кристаллы обладают интересным свойством – в прямом положении они нейтральны, но стоит их чуточку согнуть, как тут же появляется электрический заряд. При колебаниях основной мембраны, естественно, начинают колебаться и волосковые клетки. Но сверху на волоски давит покровная мембрана, они сгибаются, вследствие чего возникает электрический заряд. Таким образом, под влиянием деформации волосков рецепторных клеток синхронно со звуковыми колебаниями освобождается электрическая энергия, возникают биотоки. Эти биотоки служат раздражителями тончайших окончаний веточек слухового нерва, оплетающих волосковые клетки. По этому нерву и проводящим путям продолговатого мозга возбуждение передается в кору височных долей головного мозга, где происходит анализ и синтез звуковых раздражений.

В связи с чем механо – электрическая теория Дависа можно сформулировать так: Гидромеханические колебания перилимфы передаются на эндолимфу и текториальную мембрану, ударяясь деформирует волосковые клетки. Это вызывает образование потенциала на сенсорных клетках и высвобождение из них медиатора, который улавливается чувствительными нервными окончаниями. Эта теория объясняет восприятие только звуков низкой интенсивности, но не высокой.

Еще одна теория слуха заслуживает нашего внимания – это цитохимическая теория Винникова: В эндолимфе улиточного хода содержится ацетилхолин, который при движении текториаотной мембраны улавливается специфическими рецепторами волосковых клеток. Они сгибаются под действием сократительных и мембранных белков.

По новейшим данным, в волосковых клетках всегда имеются запасы гликогена, количество которого уменьшается под влиянием звуковой нагрузки (Я. А. Винников).

О глубоких химических изменениях в спиральном ганглии после сильного звукового воздействия сообщают Хиден, Хамбергер и Нильсон (Hyden, Hamberger, Nilsson). При помощи цитохимического способа и фотографирования в лучах коротковолнового спектра (2670 А) они обнаружили уменьшение содержания рибонуклеиновой кислоты и протеина в ганглиозных клетках, в то время как липоидные фракции клеток количественно оказались неизмененными. Роль медиатора в кортиевом органе играет ацетилхолин (Гиссельсон — Giesselson).

Кортиев орган, периферическая часть звуковоспринимающего аппарата (рецептор слухового анализатора) у млекопитающих животных и человека. Открыт итальянским гистологом А. Корти (1822-1876 годы). В процессе эволюции возникает на основе структур боковых органов. Кортиев орган располагается в спирально завитом костном канале внутреннего уха - улитковом ходе, заполненном эндолимфой. Верхняя стенка хода прилегает к так называемой лестнице преддверия и называется рейснеровой перепонкой; нижняя стенка, граничащая с так называемой барабанной лестницей, образована основной перепонкой, прикрепляющейся к спиральной костной пластинке. Лестницы преддверия и барабанная заполнены перилимфой. Наружная стенка улиткового хода, или сосудистая полоска, содержит много кровеносных сосудов. Кортиев орган расположен на основной перепонке и состоит из внутренних и наружных волосковых клеток, внутренних и наружных опорных клеток (столбовых, клеток Дейтерса, Клаудиуса, Гензена), между которыми находится туннель, где проходят направляющиеся к основаниям волосковых клеток отростки нервных клеток, лежащих в спиральном нервном ганглии. Воспринимающие звук волосковые клетки располагаются в нишах, образуемых телами опорных клеток, и имеют на поверхности, обращенной к покровной перепонке, по 30-60 коротких волосков. Опорные клетки выполняют также трофическую функцию, направляя поток питательных веществ к волосковым клеткам.

Функция Кортиева органа - преобразование (трансформация) энергии звуковых колебаний в процесс нервного возбуждения. Звуковые колебания воспринимаются барабанной перепонкой и через систему косточек среднего уха передаются жидким средам внутреннего уха - перилимфе и эндолимфе. Колебания последних приводят к изменению взаиморасположения волосковых клеток и покровной перепонки Кортиев орган, что вызывает сгибание волосков и возникновение биоэлектрических потенциалов, улавливаемых и передаваемых в центральную нервную систему отростками нейронов спирального ганглия, подходящими к основанию каждой волосковой клетки. По др. представлениям, волоски звуковоспринимающих клеток - лишь чувствительные антенны, деполяризующиеся под действием приходящих волн за счёт перераспределения ацетилхолина эндолимфы. Деполяризация вызывает цепь химических превращений в цитоплазме волосковых клеток и возникновение нервного импульса в контактирующих с ними нервных окончаниях. Различающиеся по высоте звуковые колебания воспринимаются различными отделами Кортиев орган: высокие частоты вызывают колебания в нижних отделах улитки, низкие - в верхних, что связано с особенностями гидродинамических явлений в ходе улитки.

Список используемой литературы

  1. Велицкий А.П. «Методика исследования слуховой функции». Учебник, Москва, «Просвещение», 1972.

  2. Винников Я.В., Титова Л.К. «Кортиев орган. Гистофизиология и гистохимия». Академия наук СССР: изд. Академии наук СССР, 1961.

  3. Плужников М.С., Рязанцев С.В. «Среди запахов и звуков». – М,: Молодая гвардия, 1991.

  4. Рахмилевич А.Г. «Шум и орган слуха». – Л.: Медицина, 1964.

  5. Рубинштейн С.Л. «Основы общей психологии», составители, авторы комментариев и послесловия А.В. Брушлинский, К.А.Абульханова-Славская, СПб.: Издательство "Питер", 2000.

  6. Физический энциклопедический словарь, гл. ред. А. М. Прохоров; ред. коллегия Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. — М.: Советская энциклопедия, 1983.

32