Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 8.doc
Скачиваний:
4
Добавлен:
27.11.2018
Размер:
941.06 Кб
Скачать

8.2. Статистические подсчеты радиоисточников. Зависимость logN–logS

К настоящему времени составлены обширные каталоги радиоисточников, полные до величин потока в единицы миллиянских. Один из космологических тестов, предлагаемых на основе этих каталогов – подсчеты числа N радиоисточников, имеющих плотность потока S на заданной частоте, попадающую в заданный интервал значений. В одном из вариантов подсчета берется интегральная функция распределения N(S): N – число источников, имеющих плотность потока больше S. Результаты такого подсчета, выраженные в логарифмическом масштабе, называют для краткости зависимостью logN–logS. Можно показать, что в евклидовой модели Вселенной logN = –1.5logS. Пусть имеется популяция равномерно распределенных в пространстве радиоисточников с одинаковыми светимостями L, а R – расстояние, на котором источник с заданной светимостью L дает плотность потока S: Тогда все источники, попадающие в сферу радиусом R, будут иметь плотность потока больше S. Число этих источников пропорционально объему сферы: N µ V µ R3. С другой стороны, S µ R–2. Следовательно, N µ S–3/2. То же соотношение оказывается справедливым, если источники имеют различные L, образующие некоторую функцию светимости (при определенных ограничениях на ее свойства).

Реально получаемые подсчеты радиоисточников дают более крутой наклон зависимости logN–logS, от –1.85 до –2 (в зависимости от длины волны и от типов источников, включаемых в рассмотрение). Это означает, что имеет место недостаток сильных источников (крупномасштабное "скучивание", а земной наблюдатель находится внутри локальной "дыры" в распределении источников), или же, наоборот, имеется избыток слабых источников, если в прошлом (на больших z) источники обладали в среднем более высокой светимостью. Таким образом, кривая logN–logS, кроме космологических эффектов, еще подвержена влиянию эволюции радиоисточников в прошедшие эпохи. Это приводит к дополнительным неопределенностям в интерпретации кривой logN–logS.

Подсчеты радиоисточников выполнены на частотах 178, 408, 1420, 2700 и 5000 МГц, причем как для всего неба, так и для избранных площадок, в которых имеются обзоры, полные вплоть до очень малых величин S. На практике строится нормированная дифференциальная зависимость количества источников N(S) в заданном интервале плотностей потока dS, отнесенного к N0 – числу источников в том же интервале dS для евклидовой Вселенной; очевидно, что . На рис. 8.2 изображены нормированные интегральные распределения N(S)/N0: наблюдаемое на частоте 408 МГц и ожидаемые для различных моделей Вселенной.

К

 

 

Рис. 8.2. Интегральные подсчеты N(S), нормированные на статическую евклидову модель N µ S–3/2.

 

роме эволюции светимостей источников L, имеется еще ряд эффектов, влияющих на вид получаемой зависимости logN–logS:

1) Эффективное значение светимости зависит от z источника: излучение принято в одной полосе частот , а было испущено в другой, .

2) Красное смещение z приводит к уменьшению видимого "блеска" радиоисточника сверх закона обратных квадратов; это уменьшает радиус сферы, соответствующей данной величине S; следовательно, и N уменьшается.

3) В расширяющейся Вселенной источники в прошлом должны были располагаться теснее; поэтому, глядя в прошлое, мы так их и должны видеть, т.е. при малых S число N возрастает.

С учетом эволюции радиоисточников можно получить наклон кривой logN–logS круче –1.5, если предположить, что в прошлом источники были ярче и плотность их была выше. Однако появляется слишком много свободных параметров, поэтому удовлетворительное решение проблемы logN–logS до сих пор не найдено.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]