Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 8.Информационно-аналитические системыdoc.doc
Скачиваний:
21
Добавлен:
17.11.2018
Размер:
199.68 Кб
Скачать

Тема 8. Информационно-аналитические технологии и системы.

8.1.1. Аналитические технологии

8.1.2. Информационные технологии в информационно-аналитической деятельности.

8.2. Архитектура информационно-аналитической системы.

8.3. Информационное хранилище и технология анализа данных.

8.4. Задачи и содержание оперативного (OLAP) анализа. Признаки OLAP-системы.

8.5. Системы бизнес-интеллекта (business intelligence).

8.6. Рынок инструментальных средств ИАС.

8.1. Информационно-аналитические технологии.

8.1.1. Аналитические технологии.

Аналитические технологии – это методики, которые на основе каких-либо моделей, алгоритмов, математических теорем позволяют по известным данным оценить значения неизвестных характеристик и параметров.

Простейший пример аналитической технологии – теорема Пифагора, которая позволяет по длинам сторон прямоугольника определить длину его диагонали. Эта технология основана на известной формуле с22+b2.

Другим примером аналитической технологии являются способы, с помощью которых обрабатывает информацию человеческий мозг. Даже мозг ребенка может решать задачи, неподвластные современным компьютерам, такие как распознавание знакомых лиц в толпе или эффективное управление несколькими десятками мышц при игре в футбол. Таким образом, человеку для решения этих задач необходимы дополнительные методики и инструменты.

Аналитические технологии нужны в первую очередь людям, принимающим важные решения – руководителям, аналитикам, экспертам, консультантам. Доход компании в большой степени определяется качеством этих решений – точностью прогнозов, оптимальностью выбранных стратегий.

С помощью аналитических технологий строятся системы, позволяющие существенно повысить эффективность решений.

Для того, чтобы алгоритм был применим, необходимо, чтобы данная задача полностью описывалась определенной детерминированной моделью (некоторым набором известных функций и параметров). В таком случае алгоритм дает точный ответ. Например, для применимости теоремы Пифагора следует проверить, что треугольник – прямоугольный.

На практике часто встречаются задачи, связанные с наблюдением случайных величин – например, задача прогнозирования курса акций. Для подобных задач не удается построить модели, поэтому применяется принципиально иной, вероятностный подход.

Параметры вероятностных моделей – это распределения случайных величин, их средние значения, дисперсии и т.д. Как правило, эти параметры изначально неизвестны, а для их оценки используются статистические методы, применяемые к выборкам наблюдаемых значений (историческим данным).

Такого рода методы также предполагают, что известна некоторая вероятностная модель задачи.

Приведем примеры реальных задач:

Имеется инвестиционный капитал, который нужно распределить среди 10 проектов. Для каждого проекта задана функция зависимости прибыли от объема вложения. Требуется найти наиболее прибыльный вариант распределения капитала, при условии, что заданы минимальный и максимальный объем инвестиций для каждого проекта.

Традиционное решение: Чаще всего решение в данном случае принимает руководитель, основываясь только на личных впечатлениях о проектах. Размеры упущенной выгоды при этом не подсчитывают, и неоптимальность решения может остаться незамеченной. В случае, если руководитель поручает аналитикам выбрать наиболее прибыльный вариант, применяются математические методы оптимизации.

В последние 10 лет идет активное развитие аналитических систем нового типа. В их основе – технологии искусственного интеллекта, имитирующие природные процессы, такие как деятельность нейронов мозга или процесс естественного отбора.

Наиболее популярными и проверенными из этих технологий являются нейронные сети и генетические алгоритмы. Первые коммерческие реализации на их основе появились в 80-х годах и получили широкое распространение в развитых странах.

Нейронные сети являются имитациями мозга, поэтому с их помощью успешно решаются разнообразные «нечеткие» задачи – распознавание образов, речи, рукописного текста, выявление закономерностей, классификация, прогнозирование.

В таких задачах, где традиционные технологии бессильны, нейронные сети часто выступают как единственная эффективная методика решения.

Генетические алгоритмы – это специальная технология для поиска оптимальных решений, которая успешно применяется в различных областях науки и бизнеса. В этих алгоритмах используется идея естественного отбора среди живых организмов в природе, поэтому они называются генетическими. Генетические алгоритмы часто применяются совместно с нейронными сетями, позволяя создавать предельно гибкие, быстрые и эффективные инструменты анализа данных.