Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Группа газовых гигантов. Часть 2..doc
Скачиваний:
2
Добавлен:
15.11.2018
Размер:
509.95 Кб
Скачать

Внутреннее тепло

Более разнообразная погода на Нептуне, по сравнению с Ураном, как полагают, — следствие более высокой внутренней температуры[92]. При этом Нептун в два раза удалённее от Солнца, чем Уран, и получает лишь 40 % от солнечного света, который получает Уран. Поверхностные же температуры этих двух планет примерно равны[92]. Верхние области тропосферы Нептуна достигают весьма низкой температуры в −221,4 °C. На глубине, где давление равняется 1 бару, температура достигает −201,15 °C[93]. Глубже идут газы, однако температура устойчиво повышается. Как и с Ураном, механизм нагрева неизвестен, но несоответствие большое: Уран излучает в 1,1 раза больше энергии, чем получает от Солнца[94]. Нептун же излучает в 2,61 раза больше, чем получает, его внутренний источник тепла производит 161 % от получаемого от Солнца[95]. Несмотря на то что Нептун — самая далёкая планета от Солнца, его внутренней энергии достаточно для наличия самых быстрых ветров в Солнечной системе. Предлагается несколько возможных объяснений, включая радиогенный нагрев ядром планеты (как Земля греется калием-40, к примеру)[96], диссоциация метана в другие цепные углеводороды в условиях атмосферы Нептуна[96][97], а также конвекция в нижней части атмосферы, которая приводит к торможению гравитационных волн (англ. Gravity wave) над тропопаузой[98][99]

Спутники.

Тритон

У Нептуна на данный момент известно 13 спутников[5]. Масса крупнейшего составляет более, чем 99,5 % от суммарной массы всех спутников Нептуна[104], и лишь он массивен настолько, чтобы стать сфероидальным. Это Тритон, открытый Уильямом Ласселом всего через 17 дней после открытия Нептуна. В отличие от всех остальных крупных спутников планет в Солнечной системе, Тритон обладает ретроградной орбитой. Возможно, он был захвачен гравитацией Нептуна, а не сформировался на месте, и, возможно, когда-то был карликовой планетой в поясе Койпера[105]. Он достаточно близок к Нептуну, чтобы постоянно находиться в синхронном вращении. Из-за приливного ускорения Тритон медленно двигается по спирали к Нептуну, и, в конечном счёте, будет разрушен при достижении предела Роша[106], в результате чего образуется кольцо, которое может быть более мощным, чем кольца Сатурна (это произойдёт через относительно небольшой в астрономических масштабах период времени: от 10 до 100 миллионов лет)[107]. В 1989 году Тритона была проведена оценка температуры, которая составила −235 °C (38 К)[108]. На тот момент это было наименьшее измеренное значение для объектов в Солнечной системе, обладающих геологической активностью [109]. Тритон является одним из трёх спутников планет Солнечной системы, имеющих атмосферу (наряду с Ио и Титаном). Указывается на возможность существования под ледяной корой Тритона жидкого океана, подобного океану Европы[110].

Второй (по времени открытия) известный спутник Нептуна — Нереида, спутник неправильной формы с одним из самых высоких эксцентриситетов орбиты среди прочих спутников Солнечной системы. Эксцентриситет в 0,7512 даёт ей апоапсиду, в 7 раз большую её периапсиды[111].

Спутник Нептуна Протей

С июля по сентябрь 1989 года «Вояджер-2» обнаружил 6 новых спутников Нептуна[77]. Среди них примечателен спутник Протей неправильной формы. Он примечателен тем, каким большим может быть тело его плотности, без стягивания в сферическую форму собственной гравитацией[112]. Второй по массе спутник Нептуна составляет лишь четверть процента от массы Тритона.

Четыре самые внутренние спутника Нептуна — Наяда, Таласса, Деспина иГалатея. Их орбиты так близки к Нептуну, что находятся в пределах его колец. Следующая за ними, Ларисса, была первоначально открыта в 1981 году при покрытии звезды. Сначала покрытие было приписано дугам колец, но когда «Вояджер-2» посетил Нептун в 1989 году, выяснилось, что покрытие было произведено спутником. Между 2002 и 2003 годом было открыто ещё 5 спутников Нептуна неправильной формы, что было анонсировано в 2004 году[113][114]. Поскольку Нептун был римским богом морей, его спутники называют в честь меньших морских божеств[41].

Плутон.

Звёздная величинаПлутона составляет в среднем 15,1, в перигелии достигает 13,65[1]. Для наблюдений Плутона необходим телескоп, желательно с апертурой не менее 30 см[42]. Плутон выглядит звездообразным и расплывчатым даже в очень большие телескопы, поскольку его угловой диаметр составляет всего лишь 0,11". При очень большом увеличении Плутон выглядит светло-коричневым со слабым оттенком жёлтого[43]Спектроскопический анализ Плутона показывает, что его поверхность более чем на 98 % состоит из азотного льда со следами метана и моноокиси углерода[44][45]. Расстояние и возможности современных телескопов не позволяют получить качественные снимки поверхности Плутона. Фотографии, полученныекосмическим телескопом «Хаббл», позволяют различить лишь самые общие детали, да и то нечётко[46].

Самые лучшие изображения Плутона были получены при составлении так называемых «карт яркости», созданных, благодаря наблюдениям за затмениями Плутона его спутникомХароном, происходившими в 1985—1990 гг[47]. Используя компьютерную обработку, удавалось уловить изменение поверхностного альбедо при затмевании планеты её спутником. Например, затмение более яркой детали поверхности производит бо́льшие колебания в видимой яркости, чем затмение тёмной. Используя эту технику, можно узнать полную среднюю яркость системы Плутон—Харон и отследить изменения яркости в течение долгого времени. Тёмная полоса ниже экватора Плутона, как можно заметить, имеет довольно сложную окраску, что указывает на некие, неизвестные пока механизмы формирования поверхности Плутона[48].

Карты, составленные по данным телескопа «Хаббл», свидетельствуют о том, что поверхность Плутона крайне неоднородна. Об этом также свидетельствует и кривая блеска Плутона (то есть зависимость его видимой яркости от времени) и периодические изменения в его инфракрасном спектре. Поверхность Плутона, обращённая к Харону, содержит немало метанового льда, в то время как противоположная сторона содержит больше льда из азота и моноокиси углерода и там почти нет метанового льда[44]. Благодаря этому, Плутон занимает второе место как наиболее контрастный объект в Солнечной системе (после Япета)[49]. Данные, полученные с помощью космического телескопа «Хаббл», позволяют предположить, что плотность Плутона составляет 1,8—2,1 г/см³. Вероятно, внутреннюю структуру Плутона составляют 50—70 % горных пород и 50—30 % льда[45]. В условиях системы Плутона может существовать водяной лёд (разновидности лёд I, лёд II,лёд III, лёд IV и лёд V, а также замёрзшие азот, монооксид углерода и метан[50]. Поскольку распад радиоактивных минералов в итоге нагрел бы льды достаточно для того, чтобы они отделились от горных пород, учёные предполагают, что внутренняя структура Плутона дифференцирована — горные породы в плотном ядре, окружённые мантией изо льда, толщина которой в таком случае должна будет составлять примерно 300 км[50]. Также возможно, что нагревание продолжается и сегодня, создавая под поверхностью океан жидкой воды[51].

Масса и размеры.

Астрономы, первоначально полагая, что Плутон и есть та самая «Планета X» Лоуэлла, вычислили его массу на основе его предполагаемого воздействия на орбиту Нептуна и Урана. В 1955 году считалось, что масса Плутона приблизительно равна массе Земли, а дальнейшие вычисления позволили понизить эту оценку к 1971 году приблизительно до массы Марса[52]. В 1976 году Дэйл Круикшенк, Карл Пилчер и Девид Моррисон из Гавайского университета впервые вычислили альбедо Плутона, найдя, что оно соответствует альбедо метанового льда. Исходя из этого было решено, что Плутон должен быть исключительно ярким для своего размера и потому не мог иметь массу больше, чем 1 % от массы Земли[52][53].

Открытие в 1978 году спутника Плутона — Харона — позволило измерить массу системы Плутона, используятретий закон Кеплера. Как только гравитационное влияние Харона на Плутон было вычислено, оценки массы системы Плутон — Харон упали до 1,31×1022 кг, что составляет 0,24 % от массы Земли[54]. Точное определение массы Плутона в настоящий момент невозможно, так как неизвестно соотношение масс Плутона и Харона. В настоящее время считается, что массы Плутона и Харона соотносятся в пропорции 89:11, с возможной ошибкой 1 %[50]. В целом возможная ошибка определения основных параметров Плутона и Харона составляет от 1 до 10 %.

До 1950 года считалось, что по диаметру Плутон близок к Марсу (то есть около 6700 км), ввиду того, что если бы Марс был на таком же расстоянии от Солнца, то он тоже имел бы 15 звёздную величину. В 1950 Дж. Койпер измерил при помощи телескопа с 5-метровым объективом угловой диаметр Плутона, получив значение 0,23", которому соответствует диаметр в 5900 км. В ночь с 28 на 29 апреля 1965 года Плутон должен был покрыть звезду 15-й величины, если бы его диаметр был равен определённому Койпером. Двенадцать обсерваторий следили за блеском этой звёздочки, но он не ослабел. Так было установлено, что диаметр Плутона не превосходит 5500 км. В 1978 году, после открытия Харона, диаметр Плутона был оценён как 2600 км. Позднее, наблюдения за Плутоном во время затмений Плутона Хароном и Харона Плутоном 1985—1990 гг[47]. позволили установить, что его диаметр равен примерно 2390 км[55]. С изобретением адаптивной оптики удалось точно определить и форму планеты[56]. Среди объектов Солнечной системы Плутон меньше по размерам и массе не только в сравнении с остальными планетами, он уступает даже некоторым их спутникам. Например, масса Плутона составляет лишь 0,2 от массы Луны. Плутон меньше семи естественных спутников других планет: Ганимеда, Титана, Каллисто, Ио, Луны, Европы и Тритона. Плутон в два раза больше в диаметре и раз в десять массивнее Цереры, крупнейшего объекта в поясе астероидов (расположенного между орбитами Марса и Юпитера), однако, при приблизительно равных диаметрах[3][4], уступает в массе карликовой планете Эриде из рассеянного диска, обнаруженной в 2005 году.

Атмосфера.

Атмосфера Плутона — тонкая оболочка из азота, метана и монооксида углерода, испаряющихся с поверхностного льда[57]. За последнее десятилетие атмосфера увеличилась в несколько раз под действием сублимации поверхностных льдов. На рубеже XXI века она простиралась на 100-135 километров над поверхностью, а сейчас — тянется более чем на 3000 километров, что составляет около четверти расстояния до Харона [58]. Термодинамические соображения диктуют следующий состав этой атмосферы: 99 % азота, чуть меньше 1 % моноокиси углерода, 0,1 %метана[50]. Когда Плутон отдаляется от Солнца, его атмосфера постепенно замораживается и оседает на поверхности. При приближении Плутона к Солнцу, температура около его поверхности заставляет льды сублимироваться и превращаться в газы. Это создаётантипарниковый эффект: подобно поту, охлаждающему тело при испарении с поверхности кожи, сублимация производит охлаждающий эффект на поверхность Плутона. Учёные, благодаря Субмиллиметровому массиву (англ.), недавно вычислили, что температура на поверхности Плутона 43 К (−230,1 °C), что на 10 K меньше, чем ожидалось[59]. Атмосфера Плутона была обнаружена в 1985 году при наблюдении покрытия им звёзд. В дальнейшем факт наличия атмосферы был подтверждён интенсивными наблюдениями за другими покрытиями в 1988. Когда объект не имеет атмосферы, покрытие звезды происходит достаточно резко, в случае же с Плутоном звезда затемняется постепенно. Как было установлено по коэффициенту поглощения света, атмосферное давление на Плутоне во время этих наблюдений составляло всего 0,15 Па, что составляет лишь 1/700 000 от земного[60]. В 2002 году очередное покрытие звезды Плутоном наблюдалось и анализировалось командами под началом Брюно Сикарди изПарижской обсерватории[61], Джеймсом Л. Элиотом из МТИ[62] и Джеем Пезечёффом из Уильямстаунского колледжа (Массачусетс)[63]. Атмосферное давление оценивалось на момент измерений в 0,3 Па, несмотря на то, что Плутон был дальше от Солнца, чем в 1988 году, и, таким образом, должен был быть более холодным и иметь более разрежённую атмосферу. Одно из объяснений несоответствия состоит в том, что в 1987 году южный полюс Плутона впервые за 120 лет вышел из тени, что способствовало испарению дополнительного азота из полярных шапок. Теперь потребуются десятилетия, чтобы этот газ конденсировался из атмосферы[64]. В октябре 2006 Дэйл Круикшенк из исследовательского центра NASA (новый научный сотрудник миссии «New Horizons») и его коллеги объявили об открытии при спектрографии Плутона этана на его поверхности. Этан — производное от фотолиза или радиолиза (то есть химического преобразования при воздействии солнечного света и заряженных частиц) замороженного метана на поверхности Плутона; он выделяется, судя по всему, в атмосферу[65].

Температура атмосферы Плутона значительно выше температуры его поверхности и равна минус 180 градусам по Цельсию[66].

Орбита.

Орбита Плутона значительно отличается от орбит других планет. Она сильно наклонена относительно эклиптики (более чем на 17°) и сильно эксцентрична (эллиптически). Орбиты всех других планет Солнечной системы близки к круговым и составляют небольшой угол с плоскостью эклиптики. Среднее расстояниеПлутона от Солнца составляет 5,913 млрд км, или 39,53 а. е., но из-за большого эксцентриситета орбиты(0,249) это расстояние меняется от 4,425 до 7,375 млрд км (29,6—49,3 а. е.). Солнечный свет идёт до Плутона около пяти часов, соответственно, столько же потребуется радиоволнам, чтобы долететь от Земли докосмического аппарата, находящегося возле Плутона. Большой эксцентриситет орбиты приводит к тому, что часть её проходит от Солнца ближе, чем Нептун. Последний раз такое положение Плутон занимал с 7 февраля 1979 г. по 11 февраля 1999 г. Детальные вычисления показывают, что до этого Плутон занимал такое положение с 11 июля 1735 г. по 15 сентября 1749 г. , причём всего 14 лет, тогда как с 30 апреля 1483 г. по 23 июля 1503 г. он находился в таком положении 20 лет. Из-за большого наклона орбиты Плутона к плоскости эклиптики, орбиты Плутона и Нептуна не пересекаются. Проходя перигелий, Плутон находится на 10 а. е. над плоскостью эклиптики. К тому же, период обращения Плутона равен 247,69 года, и Плутон делает два оборота за то время, пока Нептун делает три. В результате Плутон и Нептун никогда не сближаются менее чем на 17 а. е.[67][68] Орбиту Плутона можно предсказать на несколько миллионов лет как назад, так и вперёд, но не больше. Механическое движение Плутона хаотично и описывается нелинейными уравнениями. Но чтобы заметить этот хаос, необходимо наблюдать за ним достаточно долго. Есть характерное время его развития, так называемое время Ляпунова, которое для Плутона составляет 10—20 млн лет. Если производить наблюдения в течение малых промежутков времени, будет казаться, что движение регулярное (периодическое по эллиптической орбите). На самом же деле орбита с каждым периодом чуть сдвигается, и за время Ляпунова сдвигается настолько сильно, что следов от первоначальной орбиты уже не остаётся. Поэтому и моделировать движение очень сложно[67][68].