Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Mekhanika_1_kurs_1_semestr_FKhTB.doc
Скачиваний:
387
Добавлен:
29.03.2016
Размер:
188.42 Кб
Скачать
  1. Кинематика поступательного движения

При поступательном движении тела все точки тела движутся одинаково, и, вместо того чтобы рассматривать движение каждой точки тела, можно рассматривать движение только одной его точки.

Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение.

Линию, по которой движется материальная точка в пространстве, называют траекторией.

Перемещениемматериальной точки за некоторый промежуток времени называется вектор перемещения∆r=r-r0, направленный от положения точки в начальный момент времени к ее положению в конечный момент.

Скоростьматериальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета.Вектор ускоренияхарактеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета.

  1. Кинематика вращательного движения.

Вращательным движением твёрдого тела вокруг неподвижной оси называется такое движение, при котором все точки тела движутся _по окружностям, центры которых лежат на одной прямой (ось вращения).

Ось вращения может проходить через тело или лежать за его пределами. Если ось вращения проходит сквозь тело, то точки, лежа­щие на оси, при вращении тела остаются в покое. Точки твёрдого тела, находящиеся на разных расстояниях от оси вращения за одинаковые промежутки времени проходят различные расстояния и следовательно имеют различные линейные скорости .

  1. Cвязь кинематических величин поступательного и вращательного движения.

 Между движением твердого тела вокруг неподвижной оси и движением отдельной материальной точки (или поступательным движением тела) существует тесная и далеко идущая аналогия. Каждой линейной величине из кинематики точки соответствует подобная величина из кинематики вращения твердого тела. Координате sсоответствует уголφ , линейной скоростиv- угловая скоростьw,   линейному (касательному) ускорениюа- угловое ускорениеε. Сравнительные параметры движения:

Поступательное движение

Вращательное движение

Перемещение

S

Угловое перемещение

φ

Линейная скорость

Угловая скорость

Ускорение

Угловое ускорение

Масса

m

Момент инерции

I

Импульс

Момент импульса

Сила

F

Момент силы

M

Таблицу можно продолжать и далее.

Работа: 

 Кинетическая энергия 

 

Выражения для вращательного движения напоминают соответствующие выражения поступательного движения. Они получаются из  последних формальной заменой  m → I , v → w , p → L

Выражения имеют не просто формальное сходство. Поступательное движение можно рассматривать, как вращательное, с радиусом вращения, стремящимся к бесконечности, и угловой скоростью, стремящейся к нулю.

 

Представленная таблица не может претендовать на всю полноту охвата аналогичных значений. Для вращательного и поступательного движений формулируются и аналогичные законы:  

Закон сохранения импульса (ЗСИ)

,при Fвнеш = 0  

Закон сохранения момента импульса (ЗСМИ)

, при Mвнеш = 0  

Эти законы формулируются следующим образом:  

«Если геометрическая сумма внешних сил, действующих на систему, равна нулю, то импульс системы сохраняется, т.е. не меняется со временем. В частности, это имеет место, когда система замкнута»  

«Если момент внешних сил относительно неподвижного начала Оравен нулю, то момент импульса системы относительно того же начала остается постоянным во времени»

[Д.В.Сивухин. Общий Курс Физики. т.I  Механика]

  1. Динамика поступательного движения. Законы Ньютона.

Первый закон Ньютона:существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.Такие системы отсчета называются инерциальными.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.

Второй закон Ньютонаосновной закон динамики поступательного движения –отвечает на вопрос, как изменяется механическое движение тела под действием приложенной к нему силы:если на тело действует сила, то это тело приобретает ускорение, прямо пропорциональное действующей силе и обратно пропорциональное массе данного тела:

.

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Из уравнения второго закона Ньютона следует: .

В случае неизменности массы тела можно записать:

, где.

Вектор называетсяимпульсом (иликоличеством движения)тела.

Отсюда следует иная формулировка второго закона Ньютона, называемая формулировкой в дифференциальном виде, а именно: скорость изменения импульса тела равна силе, действующей на этр тело,то есть

.

В том случае, если на тела действует не одна, а несколько сил, то приведенная в этой формуле сила является равнодействующей всех действующих на это тело сил и определяется их векторной суммой.

Третий закон Ньютонаопределяет взаимодействие между материальными точками:если первая материальной точка действует на вторую с силой , то вторая точка действует на первую с силой , по модулю равной, а по направлению противоположной силе (силыи направлены по прямой, соединяющей взаимодействующие точки).

Импульс системы тел.Если принять, что импульс системы, состоящей изn тел, можно определить, как векторную сумму импульсов всех n тел, то есть, то из третьего закона Ньютона при условии отсутствия внешних сил (то есть, для замкнутой системы) следует:

, т.е..

Таким образом, импульс замкнутой системы тел не изменяется с течением времени, что являетсязаконом сохранения импульса.

  1. Закон сохранения импульса. Реактивное движение.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона.

Реактивное движение - это движение, которое возникает при отделении от тела некоторой его части с определенной скоростью.

Реактивное движение, например, выполняет ракета. Особенностью этого движения является то, что тело может ускоряться и тормозить без какой-либо внешней взаимодействия с другими телами. Продукты сгорания при вылет получают относительно ракеты некоторую скорость. Согласно закону сохранения импульса, сама ракета получает такой же импульс, как и газ, но направлен в другую сторону. Закон сохранения импульса нужен для расчета скорости ракеты.

  1. Энергия и работа при поступательном движении.

Работа – это физическая величина, характеризующая процесс превращения одной формы движения в другую. В механике принято говорить, что работа совершается силой.

Элементарной работой силы называется величина, равная скалярному произведению силы на элементарное перемещение:

 

,

 

где – элементарный путь точки приложения силы за время dt, – угол между векторами и.

Если на систему действуют несколько сил, то результирующая работа равна алгебраической сумме работ, совершаемых каждой силой в отдельности. Работа силы на конечном участке траектории или за конечный промежуток времени может быть вычислена следующим образом:

 

.

Кинетической энергиейтела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).

Кинетическая энергия поступательного движения

 

.

  1. Закон сохранения энергии.

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени

Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.

  1. Связь силы и потенциальной энергии в консервативной системе.

-Осуществляется по следующей позиции

Работа консервативных сил при элементарном изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком «минус» (работа совершается за счет убыли потенциальной энергии).

Потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня.

Для консервативных сил

или в векторном виде .

- градиент скаляра П (,,- единичные векторы координатных осей).

Потенциальная энергия тела массой на высоте вычисляется по формуле .

Потенциальная энергия упруго деформированного тела (пружины):

  1. Типы сил. Упругие силы. Потенциальная энергия упругодеформированного тела

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10-13 см.

Слабые силы, как и ядерные, действуют на малых расстояниях порядка 10-15 см. В результате их действия происходят процессы внутри ядра.

-Упругие Силы

Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и размеры тела, то деформация называется упругой. Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, называемого пределом упругости.

При превышении этого предела деформация становится пластичной, или неупругой, т.е. первоначальные размеры и форма тела полностью не восстанавливаются.

- Деформированное упругое тело(например, растянутая или сжатая пружина) способно, возвращаясь в недеформированное состояние, совершить работу над соприкасающимися с ним телами. Следовательно, упруго деформированное тело обладает потенциальной энергией. Она зависит от взаимного положения частей тела, например витков пружины. Работа, которую может совершить растянутая пружина, зависит от начального и конечного растяжений пружины. Найдем работу, которую может совершить растянутая пружина, возвращаясь к нерастянутому состоянию, т. е. найдем потенциальную энергию растянутой пружины.

  1. Гравитационные силы. Потенциальная энергия гравитационного взаимодействия.

Все тела в природе взаимно притягиваются друг к другу. Впервые Ньютон доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же — это сила всемирного тяготения (гравитационная сила), действующая между любыми телами Вселенной.

Гравитационные силы — это силы центральные, т. е. они направлены вдоль прямой, соединяющей взаимодействующие материальные точки.

Гравитационное взаимодействие осуществляется посредством гравитационного поля. Это поле, наряду с другими полями и веществом, является одной из форм материи.

С каждым телом неразрывно связано гравитационное поле, проявляющееся в том, что на помещенную в поле материальную точку действует гравитационная сила, пропорциональная массе этой точки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]