Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tehnologia_RFID_issledovatelskaya_praktika.docx
Скачиваний:
43
Добавлен:
21.03.2016
Размер:
1.16 Mб
Скачать

Классификация rfid-меток

(http://asupro.com/gps-gsm/rfid/rfid.html, http://rfidportal.ru/teorija-rfid/669-otvety-na-chasto-zadavaemye-voprosy-svyazannye-s-rfid-texnologiej.html)

Существует несколько способов систематизации RFID-меток и систем:

  1. По источнику питания

  2. По рабочей частоте

  3. По типу памяти

  4. По конструктивному исполнению

I. По источнику питания:

По источнику питания RFID-метки делятся на:

  • Пассивные

  • Активные

  • Полупассивные

Пассивные:

Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS-чипа, размещённого в метке, и передачи ответного сигнала. Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу. Преимуществом пассивных меток является практически неограниченный срок их службы (не требуют замены батареек). Недостаток пассивных меток в необходимости использования более мощных устройств считывания информации, обладающих соответствующими источниками питания.

Активные:

Активные RFID-метки обладают собственным источником питания и не зависят от энергии считывателя, вследствие чего они читаются на дальнем расстоянии, имеют большие размеры и могут быть оснащены дополнительной электроникой. Однако, такие метки наиболее дороги, а у батарей ограничено время работы.

Активные метки в большинстве случаев более надежны (например, совершают меньшее количество ошибок), чем пассивные, благодаря особой сессии связи между меткой и устройством считывания. Активные метки, обладая собственным источником питания, также могут генерировать выходной сигнал большего уровня, чем пассивные, позволяя применять их в более агрессивных для радиочастотного сигнала средах: воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе. Большинство активных меток позволяет передать сигнал на расстояния в сотни метров при жизни батареи питания до 10 лет. Некоторые RFID-метки имеют встроенные сенсоры, например, для мониторинга температуры скоропортящихся товаров. Другие типы сенсоров в совокупности с активными метками могут применяться для измерения влажности, регистрации толчков/вибрации, света, радиации, температуры и газов в атмосфере (например, этилена).

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м2) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приемопередатчиком. В настоящее время, активные метки делают размерами не больше обычной пилюли и продают по цене в несколько долларов.

Полупассивные:

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батарей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

II. По рабочей частоте:

По рабочей частоте RFID-метки делятся на:

  • Метки диапазона LF (125—134 кГц)

  • Метки диапазона HF (13,56 МГц)

  • Метки диапазона UHF (860—960 МГц)

Метки диапазона LF (125—134 кГц):

Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных, людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий (наложение двух и более волн от станций, пытающихся передать волны в один и тот же момент времени) при считывании.

Метки диапазона HF (13,56 МГц):

Системы 13МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта.

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860—960 МГц):

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы[22]. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

Метки ближнего поля (англ. UHF Near-Field), не являясь непосредственно радиометками, а используя магнитное поле антенны, позволяют решить проблему считывания в условиях высокой влажности, присутствия воды и металла. С помощью данной технологии ожидается начало массового применения RFID-меток в розничной торговле фармацевтическими товарами (нуждающимися в контроле подлинности, учёте, но при этом зачастую содержащими воду и металлические детали в упаковке).

В основном, в мире используют UF и UHF частоты, поэтому ниже мы приведем сравнительную таблицу различий между этими основными частотами:

Частота

Основные характеристики

Где применяется

HF 13.56 МГц

(высокие частоты)

- Соответствие общемировым стандартам

- Размер тэга больше чем UHF

- Дистанция считывания 1.2 м

- Низкая погршность при чтении

- Цена меток выше, чем UHF

- Вблизи металлов работают недостаточно эффективно

- Платежные карты и карты лояльности (смарт-карты)

- Контроль доступа

- Борьба с подделкой

- Различные решения для поштучного отслеживания книг, багажа, одежды и т.д.

- «Умные полки»

- Опознавание людей и личный контроль

UHF 860-930 МГц

(сверхвысокие частоты)

- Несовместимы из-за различия существующих региональных правил и нормативов

- Размер метки больше, чем HF

- Имеют больший, чем HF-метки диапазон считывания (более 3 м)

- Цена меток ниже, чем HF

- Получают развитие благодаря усилиям участников розничных цепочек поставок товаров

- Чувствительность к жидкостям и металлам

Логистика и цепочки поставок, включая:

- управление поставок

- складской менеджмент

- отслеживание активов

и т.д.

III. По типу памяти:

По типу используемой памяти RFID-метки делятся на:

RO (Read Only) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для чтения. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.

WORM (Write Once Read Many) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.

RW (Read&Write) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

IV. По конструктивному исполнению RFID-метки делятся на:

  1. Корпусные транспондеры

  2. RFID этикетки (смарт этикетки)

  3. RFID карты (бесконтактные смарт карты)

  4. RFID бирки

  5. Другие исполнения (браслеты, брелоки и т.д.)

  1. Транспондеры, у которых RFID чип и RFID антенна помещены в жесткий корпус, называются корпусными RFID метками. Корпус транспондера защищает чип и антенну от механического повреждения, температурного воздействия, влаги, пыли и электростатики. Корпусные RFID метки используются в промышленных RFID системах.

(RFID-антенна)

2) RFID этикетки представляют собой транспондер в виде “Inlay”, с лицевой стороной в виде бумаги или синтетической пленки. Смарт этикетки бывают как самоклеящимися, так и с сухой обратной стороной (Dry Inlay). RFID этикетки, как правило, дешевле корпусных транспондеров, но не могут работать в столь жестких условиях как последние. Они являются основой RFID технологий, применяемых в складском учете, торговле, библиотеках и т.д.

3) RFID карты представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде карты размером, как правило, 86 х 54 мм. Бесконтактные смарт карты используются для идентификации личности, транспортного средства и в качестве защищенного носителя информации (спецификации и т.д.).

4) RFID бирки представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде пластиковой бирки, используемой для маркировки живых деревьев и т.д.

5) RFID меток в виде различных браслетов, брелоков и т.д., используемых: для идентификации личности в больницах, фитнес-центрах, на горнолыжных курортах, в системах контроля доступа и для решения многих других задач.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]