Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizikabilety.docx
Скачиваний:
65
Добавлен:
20.03.2016
Размер:
1.77 Mб
Скачать

Билет1.

  • 1. Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. Движение материальной точки полностью определяется изменением её координат во времени (например, двух на плоскости). Изучением этого занимается кинематика точки. В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.

Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)

Криволинейное движение — движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).

Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.

Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Движение при этом не обязательно является прямолинейным.

Для описания вращательного движения — движения тела относительно выбранной точки, например закреплённого в точке, — используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.

Также для твёрдого тела выделяют плоское движение — движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела — положением любых двух точек.

При движении тела конец его радиус - вектора описывает линию, называемую траек­торией (линия, вдоль которой движется тело). Уравнение траектории движения точки пред­ставляет взаимосвязь ее координат и для плос­кого (двумерного) движения обычно выражается зависимостью у =  (х). Изменение местоположения тела за время t задаётся или вектором перемещения r, проводимым из начального в конечное местоположение тела, или скаляром – путем S, - расстоянием, отсчитываемым вдоль траектории тела в направлении его перемещения. Нормальное, тангенциальное и полное ускорения.

Для описания движения материальной точки по криволинейной траектории введем единичные векторы: связанный с движущимся телом (точкой) и направленный по касательной к траектории, и , направленный по радиусу к центру кривизны траектории.

Направление вектора  изменятся по мере движения тела (точки) по криволинейной траектории. Вектор скорости, , движущейся точки также направлен по касательной к траектории и может быть определён как, где его модуль равен. Ускорение определяется производной от скорости по времени, оно называетсякасательным или тангенциальным ускорением и направлено по касательной к траектории. Появление тангенциального ускорения обусловлено изменением скорости по величине.

Составляющая ускорения, направленная по нормали (по радиусу к центру кривизны траектории), имеет вид  и называется нормальным ускорением. Его появление связано с изменением скорости по направлению.

 

Вектор полного ускорения при движении точки по криволинейной траектории, есть сумма векторов тангенциальногои нормального  ускорений: =+.

Модуль полного ускорения равен: 

2. Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v1 и v2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от до, отдои отдо, определяются функцией распределения Максвелла

где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид

Распределение Максвелла достигает максимума при скорости , т.е. такой скорсти, к которой близки скорости большинства молекул. Площадь заштрихованной полоски с основанием dV покажет, какая часть от общего числа молекул имеет скорости, лежащие в данном интервале. Конкретный вид функции распределения Максвелла зависит от рода газа (массы молекулы) и температуры. Давление и объем газа на распределение молекул по скоростям не влияет.

Кривая распределения Максвелла позволит найти среднюю арифметическую скорость

. Таким образом,

(11.1)

С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается.

Билет 2.

1)

2.2. Угловая скорость

Векторная величина

называется угловой скоростью тела. Вектор направлен вдоль мгновенной оси вращения в сторону, определяемую правилом винта, т.е. также как вектор элементарного поворотаМодуль вектора угловой скорости равен . Вращение с постоянной угловой скоростью называется равномерным, при этом:

т.е. при равномерном вращении  показывает, на какой угол поворачивается тело за единицу времени.

2.3. Период и частота обращения

Время, за которое тело совершает один оборот, т.е. поворачивается на угол , называется периодом обращения. Так как промежутку временисоответствует угол поворота, то

откуда

Число оборотов в единицу времени, очевидно, равно:

отсюда следует, что угловая скорость

2.4. Угловое ускорение

В случае неравномерного движения  не остается постоянной. Величина, характеризующая скорость изменения угловой скорости называется угловым ускорением и равна:

(2.5)

В случае вращения тела вокруг неподвижной оси изменение вектора обусловлено толькоизменением его численного значения. При этом вектор углового ускорения направлен вдоль оси вращения в ту же сторону, что и при ускоренном вращениии при замедленномв обратном направлении. ( рис 2.3 а),б) )

2) Второе начало термодинамики, устанавливает существование энтропии как ф-ции состояния макроскопич. системы и вводит понятие абс. термодинамич. температуры. Утверждает, что все процессы, протекающие с конечной скоростью, в принципе необратимы, и дает термодинамич. критерии для определения направленности процессов. Вместе с <i.первым началом термодинамики - основа классич., или феноменологич., термодинамики, которую можно рассматривать как развитую систему следствий этих двух начал.</i.

Существует неск. разл. формулировок второго начала термодинамики и способов его обоснования, однако все они взаимосвязаны и в конечном счете эквивалентны. В частности, второе начало термодинамики можно формулировать как невозможность создания вечного двигателя второго рода - устройства, в котором рабочее тело совершало бы в периодич. цикле работу, находясь в тепловом контакте с одним источником теплоты (В. Оствальд, 1888). Во всех реальных тепловых двигателях превращение теплоты в работу обязательно сопровождается передачей определенного кол-ва теплоты окружающим телам и изменением их термодинамич. состояния, т.е. необратимо. Согласно второму началу термодинамики, необратимость того или иного процесса означает, что систему, в которой произошел процесс, невозможно вернуть в исходное состояние без к.-л. изменений в окружающей среде. Процессы, допускающие возвращение в исходное состояние как самой системы, так и внеш. среды без к.-л. изменений в них, наз. обратимыми. Обратимы лишь квазистатич. процессы, представляющие собой непрерывную последовательность состояний равновесия и протекающие бесконечно медленно. Все естеств. процессы, происходящие с конечными скоростями, необратимы; они протекают самопроизвольно в одном направлении. Помимо перехода теплоты в работу в циклич. процессах, необратимыми являются, например, процессы выравнивания температуры (теплопроводность) иликонцентрации компонентов системы (диффузия), хим. реакции.

Согласно наиболее общей формулировке второе начало термодинамики, бесконечно малое кол-во тепла , переданное системе в обратимом процессе, отнесенное к абс. температуре Т, является полным дифференциалом ф-ции состояния S, наз. энтропией. Для обратимых процессов dS; для необратимых dS. Для любых процессов (обратимых и необратимых) В. н.т. может быть обобщено записью dS  . В изолированных (замкнутых) системах и dS 0, т.е. возможны лишь процессы, сопровождающиеся увеличением энтропии(закон возрастания энтропии). В состоянии равновесия энтропия изолированной системы достигает максимума и никакие макроскопич. процессы в такой системе невозможны.

Первое начало термодинамики, представляющее собой закон сохранения энергии для систем, в которых происходят тепловые и мех. процессы, не позволяет судить об эволюции термодинамич. системы. Значение второго началатермодинамики состоит в том, что оно позволяет выделить фактически возможные в системе процессы из всех допускаемых первым началом и определить состояние термодинамич. равновесия системы, в котором никакие макроскопич. процессы без изменения внеш. условий невозможны. Сочетание второго начала термодинамики в форме TdS с первым началом dU — , где -совершенная системой работа, приводит в общем случае необратимых процессов к неравенству: dU . Это неравенство позволяет устанавливать направление протекания самопроизвольных (необратимых) процессов в закрытых системах и критерии равновесия при постоянных значениях любой из пар параметров состояния. Т, р; Т, V; S, р; S, V. Так, в системах, находящихся при постоянных Т и р, процессы самопроизвольно идут в направлении убыли энергии Гиббса G = U + pV— TS, а в состоянии равновесия энергия Гиббса достигает минимума. Это относится, в частности, к хим. реакциям, растворению, изменениям агрегатного состояния и др. превращениям в-в. Последовательное применение второго начала термодинамики к неравновесным системам и протекающим в них необратимым процессам составляет содержание термодинамики необратимых процессов.

Статистич. физика связывает энтропию с вероятностью осуществления данного макроскопич. состояния системы. Для системы из N частиц, обладающей энергией E, энтропия определяется как логарифм статистич. веса данного равновесного состояния: , т.е. числа квантовых состояний в узком интервале вблизи значения Е (k-постоянная Больцмана). Возрастание энтропии изолированной системы обусловлено ее переходом из менее вероятного в более вероятное состояние. Иными словами, эволюция такой системы осуществляется в направлении наиб. вероятного распределения энергии по отдельным частицам или подсистемам (см. Статистическая термодинамика). Однако вследствие флуктуации, обусловленных хаотич. движением образующих систему частиц, возможен переход системы из более вероятного в менее вероятное состояние; при этом энтропия системы уменьшается. Наличие флуктуации приводит к тому, что закон возрастания энтропии выполняется только в среднем для достаточно большого промежутка времени.

Само название "второго начала термодинамики»и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу; последующие формулировки связаны с именами У. Томсона, В. Оствальда, С. Карно, Л. Больцмана. Буквальное применение В. н. т. к Вселенной как целому привело Р. Клаузиуса к ошибочному выводу о неизбежности "тепловой смерти" Вселенной после достижения ею максимума энтропии.

Билет 3.

1). Динамика поступательного движения. Инерциальные системы отсчета. Сила. Масса. Импульс. Законы Ньютона. Уравнение движения.

     Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.      Первый закон Ньютонавсякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.      Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называютсяинерциальными системами отсчета. Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.      Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведаны в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловленные ее неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.      Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т.е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).      Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10–12 их значения).      Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е. приобретают ускорения (динамическое проявление сил), либо деформируются, т. е. изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется числовым значением, направлением в пространстве и точкой приложения. Итак, сила — это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры

     Второй закон Ньютона — основной закон динамики поступательного движения — от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.      Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил: а ~ F (т = const).(6.1)       При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно а ~ 1/т (F = const).     (6.2)    Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение—величины векторные, можем записать а = kF/m. (6.3)     Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).  В СИ коэффициент пропорциональности k= 1. Тогда                       A=F/m или (6.4) Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:(6.5) Векторная величина(6.6) численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называетсяимпульсом (количеством движения) этой материаль­ной точки. Подставляя (6.6) в (6.5), получим (6.7)      Это выражение —более общая формулировка второго закона Ньютона: скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки. Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе 1 кг сообщает ускорение 1 м/с2 в направлении действия силы: 1Н=1кг*м/c2      Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенст­ва нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7). В механике большое значение имеетпринцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач. Например, на рис. 10 действующая сила F=ma разложена на два компонен­та: тангенциальную силу Ft, (направлена по касательной к траектории) и

нормальную силу Fn (направлена по нормали к центру кривизны). Используя выражения иа также, можно записать:Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под F во втором законе Ньютона понимают результирующую силу.     Третий закон Ньютона      Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки: F12 = – F21       (7.1) где F12 — сила, действующая на первую материальную точку со стороны второй; F21 — сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.      Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

2) Адиабатическим называется процесс, при котором отсутствует теплообмен (δQ=0) между системой и окружающей средой. Адиабатическим процессами можно считать все быстропротекающие процессы. Таковым, например, можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько большая по значению, что обмен энергией между средой и волной произойти не успевает. Адиабатические процессы происходят в двигателях внутреннего сгорания (сжатие и расширение горючей смеси в цилиндрах), в холодильных установках и т. д.  Из первого начала термодинамики (δQ=dU+δA) для адиабатического процесса следует, что  (1)  т. е. внешняя работа совершается за счет изменения внутренней энергии системы.  Используя формулы δA=pdV и CV=dUm/dT, для произвольной массы газа перепишем уравнение (1) в виде  (2)  применив дифференцирование уравнение состояния для идеального газа pV=(m/M)RT получим(3)  Исключим из (2) и (3) температуру Т.Разделив переменные и учитывая, что СpV=γ , найдем  Проинтегрируя это уравнение в пределах от p1 до p2 и соответственно от V1 до V2, и потенцируя, придем к выражению  илиТак как состояния 1 и 2 выбраны произвольно, то можно записать(4)  Полученное выражение естьуравнение адиабатического процесса, называемое также уравнением Пуассона.  Для перехода к переменным Т, V или p, Т исключим из (55.4) с помощью уравнения Менделеева-Клапейрона  соответственно давление или объем:(5)(6)  Выражения (4) — (6) представляют собой уравнения адиабатического процесса. В них безразмерная величина(7)  называетсяпоказателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, γ=1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, γ=1,4. Значения γ, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.  Диаграмма адиабатического процесса (адиабата) в координатах р, V есть гипербола (рис. 1). На рисунке видно, что адиабата (pVγ = const) более крута, чем изотерма (pV = const) по причине, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры. 

Вычислим работу, которую совершает газ в адиабатическом процессе. Запишем уравнение (1) в виде  Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа  (8)  Используя те же приемы, что и при выводе формулы (5), выражение (8) для работы при адиабатическом расширении можно привести к видугде p1V1=(m/M)RT1  Работа, которую совершает газом при адиабатическом расширении 1—2 (определяется площадью, заштрихованной на рис. 2), меньше, чем при изотермическом, по причине, что при адиабатическом расширении осуществляется охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне такого же количества теплоты.  Рассмотренные изобарный, изохорный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны СV и Сp, в изотермическом процессе (dT=0) теплоемкость равна ±∞, в адиабатическом (δQ=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается неизменной, называется политропным.  Исходя из первого начала термодинамики при условии постоянства теплоемкости (C=const) можно вывести уравнение политропы:  (9)  где n=(С—Сp)/(С—СV)—показатель политропы. Очевидно, что при С=0, n=γ, из (55.9) получается уравнение адиабаты; при С = 0, n = 1 — уравнение изотермы; при С=Сp, n=0 —уравнение изобары, при С=СV, n=±∞ — уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

Билет 4.

1) Рассмотрим свободные затухающие колебания – колебания, у которых амплитуды из-за потерь энергии колебательной системой с течением времени убывают. Простейшим механизмом убывания энергии колебаний есть ее превращение в теплоту вследствие трения в механических колебательных системах, а также потерь, связанных с выделением теплоты, и излучения электромагнитной энергии в электрических колебательных системах.  Вид закономерностей затухания колебаний задается свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, параметры которых, определяющие физические свойства системы, в ходе процесса остаются неизменными. Например, линейными системами являются пружинный маятник при малых растяжениях пружины (когда выполняется закон Гука), колебательный контур, у которого сопротивление, индуктивность и емкость не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются аналогичными линейными дифференциальными уравнениями, что дает основания подходить к изучению колебаний различной физической природы с единой точки зрения, а также моделировать их, в том числе и на ЭВМ.  Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как  (1)  где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.  Решение уравнения (1) запишем в виде  (2)  где u=u(t). После взятия первой и второй производных (2) и подстановки их в выражение (1) найдем  (3)  Решение уравнения (3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай положителньного коэффициента:  (4)  (если (ω02 - σ2)>0, то такое обозначение мы вправе сделать). Тогда получим выражение , у которого решение будет функция . Значит, решение уравнения (1) в случае малых затуханий (ω02 >> σ2 )  (5)  где  (6)  — амплитуда затухающих колебаний, а А0 — начальная амплитуда. Выражение (5) представлено графики рис. 1 сплошной линией, а (6) — штриховыми линиями. Промежуток времени τ = 1/σ, в течение которого амплитуда затухающих колебаний становится мешьше в е раз, называется временем релаксации

Рис.1

Затухание не дает колебаниям быть периодичными и, строго говоря, к ним нельзя применять понятие периода или частоты. Но если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 1). В этом случае период затухающих колебаний с учетом выражения (4) будет равен  Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение  называется декрементом затухания, а его логарифм  (7)  — логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы.  Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна  (8)  (так как затухание мало (ω02 >> σ2 ), то T принято равным Т0).  Из формулы (8) вытекает, что добротность пропорциональна числу колебаний Ne, которые система совершает за время релаксации.  Выводы и уравнения, полученные для свободных затухающих колебаний линейных систем, можно использовать для колебаний различной физической природы — механических (в качестве примера возьмем пружинный маятник) и электромагнитных (в качестве примера возьмем электрический колебательный контур).  1. Свободные затухающие колебания пружинного маятника. Для пружинного маятника массой m, который совершает малые колебания под действием упругой силы F= -kx, сила трения прямо пропорциональна скорости, т. е.  где r — коэффициент сопротивления; знак минус говорит о том, что сила трения и скорость противоположно направлены.  При этих условиях закон движения маятника  (9)  Используя формулу и считая, что коэффициент затухания равен  (10)  получим полностью идентичное уравнению (1) дифференциальное уравнение затухающих колебаний маятника:  Из выражений (1) и (5) следует, что колебания маятника удовлетворяют уравнению  где частота (см. (4)).  Добротность пружинного маятника, используя (8) и (10), 

2) Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v1 и v2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от до, отдои отдо, определяются функцией распределения Максвелла

где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид

Распределение Максвелла достигает максимума при скорости , т.е. такой скорсти, к которой близки скорости большинства молекул. Площадь заштрихованной полоски с основанием dV покажет, какая часть от общего числа молекул имеет скорости, лежащие в данном интервале. Конкретный вид функции распределения Максвелла зависит от рода газа (массы молекулы) и температуры. Давление и объем газа на распределение молекул по скоростям не влияет.

Кривая распределения Максвелла позволит найти среднюю арифметическую скорость

. Таким образом,

(11.1)

С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается.

Билет 5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]