Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка_общ_2013.doc
Скачиваний:
85
Добавлен:
13.03.2016
Размер:
7.72 Mб
Скачать

6. Приливные электрические станции

Энергия морских приливов, или, как иногда ее называют, «лунная энергия», известна человечеству со времен глубокой древности. Эта энергия еще в далекие исторические эпохи использовалась для приведения в движение различных механизмов, в особенности мельниц. В Германии с помощью энергии приливной волны орошали поля, в Канаде—пилили дрова. В Англии приливная водоподъемная машина служила в прошлом веке для снабжения Лондона водой.

Существует огромное количество остроумных проектов приливных технических установок. Только во Франции к 1918 г. было опубликовано более 200 таких патентов. В начале XX в. предпринимались попытки сооружения мощных приливных электростанций. В США в 1935г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн. долл., было прекращено из-за выявившейся высокой стоимости электроэнергии (на 33% больше стоимости на тепловой станции). По составленному в 1940г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у речных электростанций.

Приливные электрические станции (ПЭС) выгодно отличаются от ГЭС тем, что их работа определяется космическими явлениями и не зависит от многочисленных погодных условий, определяемых случайными факторами.

Наиболее существенный недостаток ПЭС — неравномерность их работы. Неравномерность приливной энергии в течение лунных суток и лунного месяца, отличающихся от солнечных, не позволяет систематически использовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность работы ПЭС, совместив ее с ГАЭС. В то время, когда имеется избыточная мощность ПЭС, ГАЭС работает в насосном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая

электроэнергию в систему. В техническом отношении такой проект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.

Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее остановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранилище. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.

ПЭС работают в условиях быстрого изменения напора, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана достаточно совершенная и компактная горизонтальная турби­на двойного действия. Электрический генератор и часть деталей турбины заключены в водонепроницаемую капсулу и весь гидроагрегат погружен в воду.

7. Атомные электрические станции

Первая в мире АЭС была введена в эксплуатацию в г. Обнинске (СССР) 27 июня 1954 г., о чем сообщило Московское радио. Затем сообщение об успешно завершенных работах по созданию первой промышленной электростанции на атомной энергии было передано зарубежными информационными агентствами, прокомментировано радио и прессой, воспринято как сенсация.

На АЭС энергия, получаемая в результате деления я ер урана на осколки, превращается в тепловую энергию пара или газа, затем в электрическую энергию, т. е. в энергию движения электронов в проводнике. Деление ядер урана происходит при бомбардировке их нейтронами, в результате чего получаются осколки ядер, обычно неодинаковые по массе, нейтроны и другие продукты деления, которые разлетаются в разные стороны с огромными скоростями и имеют, следовательно, большие кинетические энергии. Получаемая при делении ядер энергия почти полностью превращается в теплоту. Установка, в которой происходит управляемая цепная ядерная реакция деления, называется ядерным реактором.

Обычные ТЭС принципиально отличаются от АЭС только тем, что рабочее тело на них получает теплоту в парогенераторах при сжигании органического топлива (на АЭС—в ядерных реакторах). Для подогревания воды и превращения ее в пар в ТЭС используется теплота, получаемая при сжигании угля, а в АЭС — теплота, получаемая с помощью управляемой ядерной реакции деления.

Основной элемент станции—ядерный реактор—состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

В рабочие каналы активной зоны помещают ядерное топливо в виде урановых или плутониевых стержней, покрытых герметичной металлической оболочкой. В этих стержнях и происходит ядерная реакция, сопровождаемая выделением большого количества тепловой энергии. Поэтому стержни с ядерным топливом называют тепловыделяющими элементами или сокращенно твэлами. Количество твэлов в активной зоне доходит до не скольких

Рис.7.1. Общий вид и схемы работы АЭС:

а – общий вид атомной электростанции: 1 – хранилища топлива;

2 – реакторные здания; 3 – машинный зал; 4 – электрическая подстанция;

5 – хранилище жидких отходов; б, в, г – схемы работы одно-,

двух-, трехконтурных АЭС; 1 – реактор с первичной биологической защитой; 2 – вторичная биологическая защита; 3 – турбина;

4 – электрический генератор; 5 – конденсатор или газоохладитель; 6 – насос или компрессор; 7 – регенаритивный теплообменник; 8 – циркуляционный насос; 9 – парогенератор; 10 – промежуточный теплообменник

В активную зону помещают замедлитель нейтронов, через нее также проходит теплоноситель, под которым понимают вещество, служащее для отвода теплоты. В качестве теплоносителя используется обычная вода, тяжелая вода, водяной пар, жидкие металлы, некоторые инертные газы (углекислый газ, гелий). Теплоноситель с помощью принудительной циркуляции омывает в рабочих каналах поверхности твэлов, нагревается и уносит теплоту для дальнейшего использования. Активная зона окружена отражателем, который возвращает в нее вылетающие нейтроны.

Мощность энергетического реактора определяется возможностями быстрого отвода теплоты из активной зоны. Основная часть энергии, выделяющейся при ядерной реакции в твэлах, идет на нагревание ядерного топлива, а небольшая часть—на нагревание замедлителя. Поскольку отвод теплоты происходит за счет конвективного теплообмена, то для повышения его интенсивности следует увеличивать скорость движения теплоносителя. Так, скорость движения воды в активной зоне составляет примерно 3—7 м/с, а скорость газов 30—80 м/с.

Управление реактором производится с помощью специальных стержней, поглощающих нейтроны. Стержни вводятся в активную зону и изменяют поток нейтронов, а следовательно, и интенсивность ядерной реакции.

Теплота, выделяемая в реакторе, может передаваться рабочему телу теплового двигателя (турбины) по одно­контурной (рис. 7.1, б), двухконтурной (рис. 7.1, в) и трехконтурной (рис. 7.1, г) схемам.

Каждый контур представляет собой замкнутую систему. Многоконтурная схема обеспечивает радиационную безопасность и создает удобства для обслуживания оборудования. Выбор числа контуров определяется в зависимости от типа реактора и свойств теплоносителя, характеризующих его пригодность для использования в ка­честве рабочего тела в турбине.

При работе АЭС по двухконтурной схеме нагретый в реакторе теплоноситель отдает теплоту рабочему телу в парогенераторе. Если в качестве теплоносителя используется вода, то она охлаждается в парогенераторе на 15—40°С. Теплоносители в виде жидкостей и газов охлажда­ются в парогенераторах значительнее, иногда на несколько сотен градусов.

Первый контур радиоактивен и поэтому целиком наводится внутри биологической защиты. Во втором контуре рабочее тело—вода и пар—нигде не соприкасается: радиоактивным теплоносителем первого контура, поэтому с ним можно обращаться так же, как и на обычных ГЭС.

Рис. 7.2. Схема первой АЭС:

1 – графитовый замедлитель; 2 – стержни реактора; 3 – кольцевой коллектор; 4 – подогреватель; 5 – парогенератор; 6 – пароперегреватель;

7 – турбина; 8 – конденсатор; 9 – насос второго контура;

10 – компенсатор; 11 – насос первого контура; 12 – стальной кожух;

13 – графитовый отражатель; 14 – бетонная защита

В качестве теплоносителя на первой АЭС используется вода (рис. 7.2). Чтобы в парогенераторе вода первого контура нагревала воду второго контура, превращала ее в пар и при этом не испарялась, в этом контуре используется повышенное давление, так как при этом температура кипения воды также повышается. С увеличением давления температура кипения воды изменяется следующим образом: при р = 101,3 кПа значение Ткип = 100°С, 1 при р = 1013 кПа значение Ткип = 180°С. В графитовый замедлитель помещены подвижные кадмиевые стержни-поглотители, которые автоматически регулируют процесс распада путем большего или меньшего погружения. В теплообменнике используется противоток, что дает возможность нагревать рабочее тело второго контура до 260°С и охлаждать воду первого контура до 130°С.

Биологическая защита выполняет функции изоляции реактора от окру­жающего пространства, т. е. от проникновения за пределы реактора мощных потоков нейтронов, α-, β-, γ-лучей и осколков деления. Защита реактора выполняется в виде толстого слоя (до нескольких метров) бетона с внутрен­ними каналами, по которым циркулирует вода или воздух для отвода теплоты. Количество этой теплоты равно 3—5% от всей выделенной в реакторе энергии. Из-за относительно низкой температуры оно в дальнейшем не используется.

Защита должна ограничивать уровни излучений до значений, не превышающих допустимых доз как при работе реактора, так и при его останове.

Биологическая защита, в первую очередь, предназначается для создания безопасных условий работы обслуживающего персонала. Поэтому все излучающие устройства (первый контур) помещаются внутри защитной оболочки.

ВОСПРОИЗВОДСТВО ЯДЕРНОГО ГОРЮЧЕГО

Цепную реакцию деления ядер можно получить с помощью изотопа урана 235U. В природе встречаются два вида изотопа урана— 235U и 238U в существенно неодинаковом количестве. Запасы 238U составляют 99,3% от общих запасов урана, запасы 235U—всего лишь 0,7%.

Ядро 235Uчрезвычайно неустойчиво и делится при попадании в него нейтронов любых энергий. Ядро 238Uус­тойчиво и делится только при попадании быстрых нейтронов (обладающих большой энергией). Выделение нейтронов при делении 238Uневелико, и вызвать цепную реакцию этого изотопа урана невозможно.

Вероятность захвата нейтронов ядрами в значитель­ной степени зависит от скорости нейтронов. По аналогии с определением вероятности попадания в сечение выде­ленной фигуры, которая возрастает с увеличением пло­щади сечения, вероятность захвата ядром нейтрона характеризуется сечением захвата. Непосредственно в момент деления ядер урана скорость нейтронов примерно равна 20000 км/с, при этом сечение захвата нейтронов ядрами 235U мало. Поэтому нейтроны необходимо замед­лить, пропустив их через вещество из легких элементов, не поглощающих нейтроны: воду, тяжелую воду, графит, бериллий.

При скорости нейтронов —u=30 км/с наступает резонансный захват нейтронов ядрами урана 238U, которые образуют плутоний 239Рu, сходный по ядерным характеристикам с ураном 235U. Дальнейшее снижение скорости нейтронов вызывает уменьшение сечения захвата ядрами 238U и увеличение его ядрами 235U. Нейтроны, имеющие скорости около 2 км/с, называются тепловыми. Сечение захвата тепловых нейтронов ядрами 235U в 20 000 раз больше, чем ядер 238U. Тепловые нейтроны могут вызывать цепную реакцию у природного (необогащенного) урана.

При делении одного ядра урана выделяется 200 МэВ энергии, причем

26

1 эВ—это энергия, которую получает частица с зарядом, равным заряду электрона при прохождении разности потенциалов в 1 В: 1эВ=1е*1В*1.6-10-12 эрг=4,45-10-26 кВт-ч; 1 эВ - основная единица измерения энергии в ядерной и атомной физике.

В 1 г урана содержится 2,6-1021 ядер, при делении которых можно получить 23,2 МВт-ч энергии. При сжигании 1 г угля получается всего 7—8 Вт-ч энергии.

При захвате нейтронов ядрами 238U и 232Th образуются плутоний 239Pu и уран 233U, способные создавать цепные реакции деления и, следовательно, рассматриваемые как ядерное топливо. Такое ядерное топливо получают в специальных реакторах-размножителях.

В ядерной физике «размножителем» называют реактор, который на 1 атом сожженного топлива производит свыше одного расщепляющегося атома. Изотопы 232Thи 238Uназывают воспроизводящими. Деление одного ядра 235Uв среднем сопровождается выделением 2,5 нейтрона, из которых один нейтрон необходим для поддержания цепной реакции, а оставшиеся 1,5 нейтрона ис­пользуются для поглощения неделящимися ядрами.

Урановый цикл размножения на быстрых нейтронах показан на рис. 7.3. В СССР в 1973 г. в г. Шевченко начала работать первая в мире промышленная АЭС на быстрых нейтронах.

Рис. 7.3. Урановый цикл размножения на быстрых нейтронах