Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Типовые технологические процессы изготовления деталей машин

.pdf
Скачиваний:
147
Добавлен:
11.03.2016
Размер:
1.55 Mб
Скачать

Рис. 54 Кронштейн

5ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ЗУБЧАТЫХ КОЛЕС

Всовременных машинах широко применяют зубчатые передачи. Различают силовые зубчатые передачи, предназначенные для передачи крутящего момента с изменением частоты вращения валов, и кинематические передачи, служащие для передачи вращательного движения между валами при относительно небольших крутящих моментах.

Зубчатые передачи, используемые в различных механизмах и машинах, делят на цилиндрические, конические, червячные, смешанные и гиперболоидные (винтовые и гипоидные).

Наибольшее распространение получили цилиндрические, конические и червячные передачи (рис. 55). Ниже рассмотрены способы формообразования зубьев цилиндрических зубчатых колес.

Цилиндрические зубчатые колеса изготовляют с прямыми и косыми зубьями, реже – с шевронными. Стандарт устанавливает 12 степеней точности цилиндрических зубчатых колес (в порядке убывания точности): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Рис. 55 Виды зубчатых передач:

а – цилиндрическая; б – коническая; в – червячная; 1 – шестерня; 2 – зубчатое колесо; 3 – червяк; 4 – червячное колесо

По технологическому признаку зубчатые колеса делятся на:

цилиндрические и конические без ступицы и со ступицей, с гладким или шлицевым отверстием;

многовенцовые блочные с гладким или шлицевым отверстием;

цилиндрические, конические и червячные типа фланца;

цилиндрические и конические с хвостовиком;

валы-шестерни.

У цилиндрических колес зубья выполняют прямыми, спиральными или шевронными.

Обработка зубчатых колес разделяется на два этапа: обработку до нарезания зубьев и обработку зубчатого венца. Задачи первого этапа соответствуют в основном аналогичным задачам, решаемым при обработке деталей классов: диски (зубчатое колесо плоское без ступицы), втулки (со ступицей) или валов (вал-шестерня). Операции второго этапа обычно сочетают с отделочными операциями обработки корпуса колеса.

Технологические задачи

Точность размеров. Самым точным элементом зубчатого колеса является отверстие, которое выполняется обычно по 7- му квалитету, если нет особых требований.

Точность взаимного расположений. Несоосность начальной окружности зубчатого колеса относительно посадочных поверхностей допускается не более 0,05...0,1 мм. Неперпендикулярность торцов к оси отверстия или вала (биение торцов) обычно принимается не более 0,01...0,015 мм на 100 мм диаметра. В зависимости от условий работы колеса эта величина может быть повышена или несколько уменьшена.

Твердость рабочих поверхностей. В результате термической обработки поверхностная твердость зубьев цементируемых зубчатых колес должна быть в пределах НRС 45…60 при глубине слоя цементации 1…2 мм. При цианировании твердость НRС 42...53, глубина слоя должна быть в пределах 0,5...0,8 мм.

Твердость незакаливаемых поверхностей обычно находится в пределах НВ 180...270. Для рассматриваемого зубчатого колеса (рис. 56):

посадочное отверстие выполняется по 7-му квалитету;

точность формы не задается;

точность взаимного расположения ограничена величиной торцового биения плоских поверхностей относительно оси отверстия не более 0,016 мм, а также величиной несимметричности шпоночного паза относительно оси отверстия не более

0,02 мм;

Рис. 56 Зубчатое колесо с типовыми требованиями

кточности его изготовления

шероховатость поверхности зубчатого венца Rа = 0,63 мкм, отверстия и торцов – 1,25 мкм. Зубчатый венец закаливается ТВЧ до НRС 45...50 на глубину 1...2 мм.

Различают основные виды заготовок зубчатых колес при разных конструкциях и серийности выпуска: заготовка из проката; поковка, выполненная свободной ковкой на ковочном молоте; штампованная заготовка в подкладных штампах, выполненных на молотах или прессах; штампованная заготовка в закрепленных штампах, выполненных на молотах, прессах и горизонтально-ковочных машинах.

Заготовки, получаемые свободной ковкой на молотах, по конфигурации не соответствуют форме готовой детали, но структура металла благодаря ковке улучшается по сравнению с заготовкой, отрезанной пилой от прутка.

Штамповка заготовок в закрытых штампах имеет ряд преимуществ: снижается расход металла из-за отсутствия облоя, форма заготовки ближе к готовой детали, снижается себестоимость, экономия металла составляет от 10 до 30 %. Однако отмечается повышенный расход штампов.

Штамповка на прессах имеет большое преимущество перед штамповкой на молотах: получается точная штамповочная заготовка, припуски и напуски меньше на 30 %, по конфигурации заготовка ближе к готовой детали. На прессах можно штамповатьспрошиваниемотверстия.

Штамповкой на горизонтально-ковочных машинах изготовляют заготовки зубчатых колес с хвостовиком или с отверстием.

Выбор базовых поверхностей зависит от конструктивных форм зубчатых колес и технических требований. У колес со ступицей (одновенцовых и многовенцовых) с достаточной длиной центрального базового отверстия (L/D > 1) в качестве технологических баз используют: двойную направляющую поверхность отверстия и опорную базу в осевом направлении – поверхность торца.

У одновенцовых колес типа дисков (L/D < 1) длина поверхности отверстия недостаточна для образования двойной направляющей базы. Поэтому после обработки отверстия и торца установочной базой для последующих операций служит торец, а поверхность отверстия – двойной опорной базой. У валов-шестерен в качестве технологических баз используют, как правило, поверхности центровых отверстий.

На первых операциях черновыми технологическими базами являются наружные необработанные "черные" поверхности. После обработки отверстия и торца их принимают в качестве технологической базы на большинстве операций. Колеса с нарезанием зубьев после упрочняющей термообработки при шлифовании отверстия и торца (исправление технологических баз) базируют по эвольвентной боковой поверхности зубьев для обеспечения наибольшей соосности начальной окружности и посадочного отверстия.

Для обеспечения наилучшей концентричности поверхностей вращения колеса применяют следующие варианты базирования. При обработке штампованных и литых заготовок на токарных станках за одну установку, заготовку крепят в кулачках патрона за черную поверхность ступицы или черную внутреннюю поверхность обода. При обработке за две установки заготовку сначала крепят за черную поверхность обода и обрабатывают отверстие, а при второй установке заготовки на оправку обрабатывают поверхность обода и другие поверхности колеса.

5.1Основные методы формообразования зубьев зубчатых колес

Взависимости от способа образования зубьев различают два метода зубонарезания: копирование и обкатку. Оба метода используют на различных зубообрабатывающих станках.

Нарезание зубчатых колес методом копирования. Распространенной разновидностью метода копирования является зубофрезерование. Зубофрезерование осуществляется на зубофрезерных вертикальных и горизонтальных станкахполуавтоматах. На зубофрезерных станках производят нарезание цилиндрических зубчатых колес по методу обкатки или копирования.

Нарезание зубьев по методу копирования осуществляют модульной дисковой или модульной концевой фрезой. Нарезание, по существу, представляет собой разновидность фасонного фрезерования. Режущие кромки зубьев дисковой или концевой фрезы изготовляют по форме впадины между зубьями колеса, и при фрезеровании они копируют форму впадины, создавая, таким образом, две половины профилей двух соседних зубьев. После нарезания одной впадины заготовка поворачивается на один зуб с помощью делительного механизма, и фреза снова проходит по новой впадине между зубьями, и т.д. (рис. 57).

Вмассовом производстве применяют зубодолбежные резцовые головки, работа которых основана на методе копирования. Производительность такого метода очень высока, точность зависит от точности резцовой головки.

Рис. 57 Схемы фрезерования цилиндрических колес методом копирования:

а – дисковой фрезой; б – концевой фрезой; 1 – заготовка; 2 – дисковая фреза; 3 – концевая фреза

Другой разновидностью нарезания зубчатых колес методом копирования является протягивание как наружных, так и внутренних зубчатых поверхностей, характеризующееся высокой производительностью.

Нарезание зубчатых колес методом обкатки. При методе обкатки заготовка и инструмент воспроизводят движение пары сопряженных элементов зубчатой или червячной передачи. Для этого либо инструменту придается форма детали, которая могла бы работать в зацеплении с нарезаемым колесом (зубчатое колесо, зубчатая рейка, червяк), либо инструмент выполняют таким образом, чтобы его режущие кромки описывали в пространстве поверхность профиля зубьев некоторого зубчатого колеса или зубчатой рейки, которые называют соответственно производящим колесом или производящей рейкой. В процессе взаимного обкатывания заготовки и инструмента режущие кромки инструмента, постепенно удаляя материал из нарезаемой впадины заготовки, образуют на ней зубья.

Нарезание зубьев цилиндрических зубчатых колес методом обкатки производится с помощью следующих инструментов: червячных фрез (зубофрезерование); дисковых долбяков (зубодолбление) и долбяков в виде гребенок-реек (зубострогание).

Зубонарезание червячными фрезами. Для нарезания зубьев этим методом требуются универсальные зубофрезерные станки и специальный режущий инструмент – червячные фрезы. Станки выпускают с вертикальной или горизонтальной осями вращения фрезы. Метод является высокопроизводительным.

Фрезу на станке устанавливают таким образом, чтобы ее ось была повернута под углом β подъема винтовой линии витков фрезы (рис. 58).

Червячная фреза, кроме вращения, совершает поступательное движение подачи вдоль образующей цилиндра нарезаемого колеса, в результате чего колесо обрабатывается по всей его ширине.

Рис. 58 Схема фрезерования зубьев червячной фрезой

В зависимости от модуля устанавливают число рабочих ходов фрезы: для т = 2…2,5 мм – один рабочий ход, для т > 2,5 мм – два рабочих хода и более.

Повышения производительности при зубофрезеровании достигают путем увеличения диаметра фрезы (повышается стойкость инструмента), жесткости ее установки, использования специальных инструментальных материалов, в том числе твердосплавных, композиционных, применения многозаходных червячных фрез и увеличения числа одновременно нарезаемых колес.

Зубодолбление. Режущим инструментом является долбяк, представляющий собой зубчатое колесо с эвольвентным профилем зубьев. В процессе нарезания долбяк и нарезаемое зубчатое колесо находятся в относительном движении зацепления (без зазора), т.е. их окружные скорости на начальных окружностях равны, а частота вращения и число зубьев связаны передаточным отношением i = nи/nз = zз/zи, где nи, nз – соответственно частота вращения инструмента и заготовки колеса; zз, zи – соответственно число зубьев заготовки колеса и инструмента.

Нарезание зубьев долблением осуществляется на зубодолбежных станках.

Обработка за один рабочий ход применяется для зубчатых колес с т = 1...2 мм; с 2 < т < 4 – за два рабочих хода; с т > 4 мм – за три рабочих хода.

Кроме отмеченных обстоятельств, зубодолбление является единственным методом для нарезания колес с внутренним зацеплением (при средних и малых диаметрах), а также при обработке зубчатых венцов в блочных шестернях.

Зубострогание. Этот метод основан на зацеплении колеса и рейки, воспроизводимом инструментом – гребенкой. Обработка колес осуществляется на станках двух типов: с вертикальной и горизонтальной осью заготовки. Станки последнего типа применяют также для обработки колес с неразрывным шевронным зубом.

У зубострогания производительность меньше, чем у зубофрезерования червячной фрезой и зубодолбления. Накатывание зубчатых поверхностей имеет большие преимущества перед способами обработки резанием: повышает

производительность в 5 – 30 раз; увеличивает износостойкость и прочность зубьев; значительно уменьшает отходы металла и др. Различают горячее и холодное накатывание. Горячее накатывание применяют для профилей с модулем больше 2 мм; холодное накатывание рекомендуется для мелкомодульных колес с модулем до 1,5...2 мм.

Рис. 59 Схема горячего накатывания зубьев колес:

1 – накатники; 2 – реборды; 3 – заготовка; 4 – переходная втулка; 5 – оправка

Может применяться и комбинированное накатывание для средних и крупных модулей (основная пластическая деформация проводится в горячем состоянии, а окончательное профилирование – в холодном).

Горячее накатывание производится как с радиальной, так и с продольной подачей. Схема накатки с продольной подачей аналогична холодному накатыванию.

Схема накатывания с радиальным движением подачи показана на рис. 59.

Перед накатыванием заготовку нагревают до 1000...1200 °С за 20...30 с до накатывания, затем устанавливают на оправку специального станка и производят накатывание.

Шевингование – чистовая обработка зубьев незакаленных цилиндрических зубчатых колес (твердость обычно не более НRС 40), осуществляемая инструментом – шевером (рис. 60, а).

Шевер имеет форму зубчатого колеса или зубчатой рейки. На поверхности зубьев шевера имеются канавки от головки до ножки.

Шевингование зубчатых колес заключается в срезании весьма тонких волосовидных стружек толщиной 0,05...0,01 мм острыми кромками канавок шевера во время движения обкатки обрабатываемого колеса и инструмента и возникающего при этом относительного скольжения профилей зацепляющихся зубьев (рис. 60, б).

Обычно в процессе шевингования точность зубчатых колес повышается на одну степень, реже – на две. Шевинговальные станки выпускают с горизонтальной или вертикальной осью (для обработки колес большого диамет-

ра).

 

 

 

 

 

 

а)

 

б)

Рис. 60 Шевингование:

а– дисковый шевер; б – схема обработки зубьев колес дисковым шевером:

1– дисковый шевер; 2 – заготовка; vш – скорость шевера; vд – скорость заготовки; Sпр – продольная подача (с реверсированием) стола;

Sв – вертикальная подача стола

Внастоящее время есть несколько методов шевингования: параллельное, диагональное, тангенциальное и врезное. Шевингуют зубчатые колеса, как наружного, так и внутреннего зацепления.

Шлифование зубьев зубчатых колес – наиболее надежный метод отделочной обработки, обеспечивающий высокую точность, как правило, закаленных зубчатых колес. Шлифование зубьев производят на различных зубошлифовальных станках как методом копирования, так и методом обкатки.

На станках, работающих по методу копирования, шлифуют зубчатые колеса профилированными кругами (рис. 61). Ось заготовки в этих станках расположена горизонтально. Они предназначены главным образом для шлифования прямозубых колес.

Метод обкатки осуществляется на зубошлифовальных станках, которые точны и универсальны в наладке, но производительность которых сравнительно невелика и зависит от принципа работы и типа применяемых шлифовальных кругов.

При шлифовании зубьев этим методом (рис. 62) воспроизводится зубчатое зацепление пары рейка – зубчатое колесо. Инструментом является воображаемая рейка, боковые стороны зуба которой образованы шлифовальными тарельчатыми

кругами 2. Шлифовальные круги получают вращательное движение, движение обкатки, заготовка 1 выполняет возвратнопоступательное движение.

Рис. 61 Схемы профильного шлифования зубьев:

а – профилирование зубьев; б – правка шлифовального круга

Движение обкатки складывается из двух движений: вращения заготовки вокруг своей оси А и поступательного движения вдоль воображаемой рейки Б. В результате этих двух движений заготовка перекатывается без скольжения по воображаемой рейке.

На практике существуют и другие методы шлифования цилиндрических зубчатых колес: дисковым кругом; двумя дисковыми кругами; червячным кругом и др.

Рис. 62 Схема шлифования зубьев методом обкатки:

1 – зубья колеса; 2 – шлифовальные круги

Хонингование применяют для чистовой отделки зубьев, как правило, закаленных цилиндрических колес внешнего и внутреннего зацеплений. Процесс осуществляется на зубохонинговальных станках с помощью зубчатого абразивного инструмента – хона.

Зубчатые хоны представляют собой прямозубые или косозубые колеса, обычно состоящие из стальной ступицы и абразивного венца того же модуля, что и обрабатываемое колесо. Частота вращения хона 180...200 мин-1, скорость подачи стола 180...210 мм/мин. Время хонингования зубчатого колеса 30...60 с.

Хонингование позволяет уменьшить параметры шероховатости и тем самым повысить долговечность зубчатой переда-

чи.

К отделочным методам относятся также: обкатка зубьев и прикатка (зацепление с эталонным колесом); притирка (искусственное изнашивание рабочей поверхности зубьев притирами с применением абразивной пасты); приработка (притирание пары зубчатых колес без притира) и др.

5.2 Типовой маршрут изготовления зубчатых колес

Основные операции механической обработки зубчатого колеса со ступицей 7-й степени точности (рис. 63) следующие.

005 Заготовительная.

Для заготовок из проката – резка проката, для штампованных заготовок – штамповка.

Штампованные заготовки целесообразно выполнять с прошитыми отверстиями, если их диаметр более 30 мм и длина не более 3-х диаметров.

Заготовки из чугуна и цветных сплавов (иногда из сталей) получают литьем.

010 Токарная.

Точить торец обода и торец ступицы с одной стороны начерно, точить наружную поверхность обода до кулачков патрона начерно, расточить начерно на проход отверстие (или сверлить и расточить при отсутствии отверстия в заготовке), точить наружную поверхность ступицы начерно, точить фаски.

Технологическая база – наружная поверхность обода и торец, противолежащий ступице (закрепление в кулачках токарного патрона).

Оборудование: единичное производство – токарно-винторезный станок; мелко- и среднесерийное – токарноревольверный, токарный с ЧПУ; крупносерийное и массовое – одношпиндельный или многошпиндельный токарный полуавтомат (для заготовки из прутка – прутковый автомат).

Рис. 63 Цилиндрическое зубчатое колесо с односторонней ступицей

015 Токарная.

Точить базовый торец обода (противолежащий ступице) начерно, точить наружную поверхность обода на оставшейся части начерно, расточить отверстие под шлифование, точить фаски.

Технологическая база – обработанные поверхности обода и большего торца (со стороны ступицы). Оборудование – то же (см. операцию 010).

020 Протяжная (долбежная).

Протянуть (долбить в единичном производстве) шпоночный паз или шлицевое отверстие. Технологическая база – отверстие и базовый торец колеса.

Оборудование– горизонтально-протяжнойилидолбежный станки.

Применяются варианты чистового протягивания отверстия на данной операции вместо чистового растачивания на предыдущей операции.

025 Токарная.

Точить базовый и противолежащие торцы, наружную поверхность венца начисто.

Технологическая база – поверхность отверстия (реализуется напрессовкой на оправку, осевое положение на оправке фиксируется путем применения подкладных колец при запрессовке заготовки). Необходимость данной операции вызывается требованием обеспечения соосности поверхностей вращения колеса.

Оборудование – токарно-винторезный (единичное производство), токарный с ЧПУ (серийное) или токарный многорезцовый полуавтомат.

030 Зубофрезерная.

Фрезеровать зубья начерно (обеспечивается 8-я степень точности).

Технологическая база – отверстие и базовый торец (реализуется оправкой и упором в торец). Оборудование – зубофрезерный полуавтомат.

035 Зубофрезерная.

Фрезеровать зубья начисто (обеспечивается 7-я степень точности).

040 Шевинговальная.

Шевинговальная операция повышает на единицу степень точности зубчатого колеса. Операции применяют для термообрабатываемых колес с целью уменьшения коробления зубьев, так как снимается поверхностный наклепанный слой после фрезерования.

Технологическая база – отверстие и базовый торец (реализуется оправкой). Оборудование – зубошевинговальный станок.

045 Термическая.

Калить заготовку или зубья (ТВЧ) или цементировать, калить и отпустить – согласно техническим требованиям. Наличие упрочняющей термообработки, как правило, приводит к снижению точности колеса на одну единицу.

050 Внутришлифовальная.

Шлифовать отверстие и базовый торец за один установ. Обработка отверстия и торца за один установ обеспечивает их наибольшую перпендикулярность.

Технологическая база – рабочие эвольвентные поверхности зубьев (начальная окружность колеса) и торец, противолежащий базовому. Реализация базирования осуществляется специальным патроном, у которого в качестве установочных элементов используют калибровочные ролики или зубчатые секторы. Необходимость такого базирования вызвана требованием обеспечения равномерного съема металла и зубьев при их последующей отделке с базированием по отверстию на оправке.

Оборудование – внутришлифовальный станок.

При базировании колеса на данной операции за наружную поверхность венца для обеспечения соосности поверхностей вращения необходимо ввести перед или после термообработки круглошлифовальную операцию для шлифования наружной поверхности венца и торца, противолежащего базовому (желательно за один установ на оправке).

Технологическая база – отверстие и базовый торец.

Оборудование – круглошлифовальный или торцекруглошлифовальный станки.

Необходимость отделки наружной поверхности венца колеса часто вызывается также и тем, что контроль основных точностных параметров зубьев производится с использованием этой поверхности в качестве измерительной базы.

055 Плоскошлифовальная.

Шлифовать торец, противолежащий базовому (если необходимо по чертежу). Технологическая база – базовый торец.

Оборудование – плоскошлифовальный станок с прямоугольным или круглым столом.

060 Зубошлифовальная.

Шлифовать зубья.

Технологическая база – отверстие и базовый терец.

Оборудование – зубошлифовальный станок (обработка обкаткой двумя тарельчатыми или червячным кругами или копированием фасонным кругом). При малом короблении зубьев при термообработке (например, при азотировании вместо цементации) операциязубошлифованияможетбытьзамененазубохонингованиемиливообщеотсутствовать.

Наличие зубошлифовальной или зубохонинговальной операции определяется наличием и величиной коробления зубьев при термообработке. Двукратное зубофрезерование и шевингование зубьев до термообработки может обеспечить 6-ю степень точности. При потере точности во время термообработки на одну степень конечная 7-я степень точности будет достигнута. Введение отделочной операции зубошлифования или зубохонингования необходимо только при уменьшении точности колеса при термообработке больше, чем на одну степень.

065 Контрольная.

Применяются варианты техпроцесса с однократным зубофрезерованием, но с двукратным зубошлифованием.

Наличие упрочняющей термообработки приводит, как правило, к снижению степени точности колес на одну единицу, что требует введения дополнительной отделочной операции. Для незакаливаемых зубчатых колес шевингование является последней операцией; перед термообработкой шевингуют зубья в целях уменьшения деформации колеса в процессе термообработки и повышения степени на одну единицу.

6ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ РЫЧАГОВ

Кдеталям класса рычагов относятся собственно рычаги, тяги, серьги, вилки, балансиры, шатуны.

Рычаги являются звеньями системы машин, аппаратов, приборов, приспособлений. Совершая качательное или вращательное движение, рычаги передают необходимые силы и движения сопряженным деталям, заставляя их выполнять требуемые перемещения с надлежащей скоростью. В других случаях рычаги, например прихваты, остаются неподвижными и фиксируют относительное положение сопряженных деталей.

Детали класса рычагов имеют два отверстия или больше, оси которых расположены параллельно или под прямым углом. Тело рычагов представляет собой стержень, не обладающий достаточной жесткостью. В деталях этого класса, кроме основных отверстий, обрабатываются шпоночные или шлицевые пары, крепежные отверстия и прорези в головках. Стержни рычагов часто не обрабатывают.

Значительное разнообразие конструкций рычагов вызывает необходимость их классификации с целью сужения типовых технологических процессов. С этой целью рекомендуется следующая классификация:

1Рычаги, у которых торцы втулок имеют общую плоскость или их торцы лежат в одной плоскости.

2Рычаги, у которых торцы втулок лежат в разных плоскостях.

3Рычаги, у которых имеется длинная втулка с отверстием и значительно более короткие втулки.

Технологические задачи

Точности размеров. Отверстия – основные и вспомогательные базы, поверхностями которых рычаги и вилки сопрягаются с валиками, проектируют у рычагов и шарнирных вилок по Н7...Н9, а у вилок переключения для уменьшения перекоса при осевом перемещении – по Н7...Н8. Точность расстояний между параллельными исполнительными поверхностями вилок переключения назначают по IТ10...IТ12. Расстояние между осями отверстий основных и вспомогательных баз рычагов должны соответствовать расчетным; допускаемые отклонения в зависимости от требуемой точности колеблются от ± 0,025

до + 0,1 мм.

Точность формы. В большинстве случаев особых требований к точности формы поверхностей не предъявляется, т.е. погрешность формы не должна превышать допуск на размер или, в зависимости от условий эксплуатации, погрешности формы не должны превышать от 40 до 60 % от поля допуска на соответствующий размер.

Точность взаимного расположения. Для хорошего прилегания поверхностей отверстий к сопряженным деталям оси поверхностей отверстий – вспомогательных баз рычагов должны быть параллельны осям поверхностей отверстий – основных баз с допускаемыми отклонениями (0,05...0,3)/100 мм.

У рычагов, имеющих плоские обработанные поверхности, в некоторых случаях (по служебному назначению) задается перпендикулярность осей отверстий относительно этих плоскостей с допускаемыми отклонениями (0,1...0,3)/100.

Качество поверхностного слоя. Шероховатость поверхности отверстий у рычагов и вилок в зависимости от точности диаметров отверстий назначают Rа = 0,8...3,2 мкм, шероховатость исполнительных поверхностей у рычагов Rа = 0,63...3,1, у вилок переключения 0,8...3,2 мкм. Для увеличения сроков службы твердость исполнительных поверхностей рычагов и вилок устанавливают НRС 40...60.

В качестве материалов для изготовления рычагов служат: серый чугун, ковкий чугун и конструкционные стали. Работающие при незначительных нагрузках рычаги изготавливают из пластмассы.

Выбор материала зависит от служебного назначения и экономичности изготовления детали. Рычаги сложной формы могут быть достаточно экономично изготовлены из заготовки-отливки. Для деталей, работающих в машинах под небольшими, неударными нагрузками, выбирают серый чугун. Для нежестких деталей, работающих с толчками и ударами, недостаточно вязкий серый чугун является ненадежным материалом и заменяется ковким чугуном. При получении ковкого чугуна обязательным становится отжиг, после которого заготовки коробятся и должны дополнительно подвергаться правке.

Чугунные заготовки рычагов получают обычно литьем в песчаные формы, отформованные по механическим моделям. При повышенных требованиях к точности отливок заготовки отливают в оболочковые формы. Отливки из ковкого чугуна следует подвергать отжигу и последующей правке для уменьшения остаточных деформаций. Припуски на обработку и допуски на размеры отливок рычагов определяются соответствующими стандартами.

Стальные заготовки рычагов получают ковкой, штамповкой, литьем по выплавляемым моделям и реже сваркой. При штамповке заготовок в небольших количествах применяют подкладные штампы. С увеличением масштаба изготовления заготовок более экономичной становится штамповка их в открытых и закрытых штампах. В серийном производстве штамповки выполняют на штамповочных молотах, фрикционных и кривошипных прессах, а в крупносерийном и массовом производствах – на кривошипных прессах и горизонтально-ковочных машинах. Для повышения производительности и уменьшения себестоимости штампованных заготовок их предварительное формование в массовом производстве в ряде случаев производят на ковочных вальцах.

При фрезеровании торцов втулок за технологическую базу принимают или поверхности стержня рычага, или противоположные торцы втулок, при их шлифовании за технологическую базу принимают противоположные торцы втулок.

При обработке основных отверстий в качестве технологической базы выбирают обработанные торцы втулок и их наружные поверхности, что обеспечивает равностенность втулок. Заключительные этапы обработки выполняют при использовании в качество технологической базы одного или двух основных отверстий торцов втулок.

6.1 Типовой маршрут изготовления рычагов

Рассмотрим основные операции механической обработки рычагов с общей плоскостью торцов втулок (рис. 64).

005 Заготовительная.

Чугунные заготовки получают литьем в песчаные формы или оболочковые. Отливки из ковкого чугуна следует подвергать отжигу и последующей правке для уменьшения остаточных деформаций. Стальные заготовки – ковкой, штамповкой, литьем по выплавляемым моделям, а в единичном производстве – сваркой.

010 Фрезерная.

Фрезеровать торцы втулок с одной стороны начерно или начисто и с припуском под шлифование (при необходимости).

Рис. 64 Рычаг

Технологическая база (установочная) – поверхность стержня или противоположные торцы втулок. Направляющую и опорную базы выбирают из условий удобства установки детали. Станок – вертикально-фрезерный или карусельнофрезерный.

015 Фрезерная.

Аналогично предыдущей операции, но с другой стороны. Технологическая база – обработанные торцы втулок. В серийном и массовом производствах обработка торцов втулок может выполняться одновременно с двух сторон, на горизонтальнофрезерном станке набором фрез. Технологическая база – поверхность стержня или поверхность втулок. Если заготовки проходят чеканку (т.е. торцы втулок обжаты прессом), то фрезерную обработку не производят.

020 Обработка основных отверстий.

Технологическая база – обработанные торцы втулок и их наружные поверхности, что обеспечивает равностенность втулок. В зависимости от типа производства операцию выполняют:

в единичном и мелкосерийном производствах на радиально- и вертикально-сверлильных станках или расточных станках по разметке со сменой инструмента;

в мелкосерийном и серийном производствах – на сверлильных станках с ЧПУ, на радиально- и вертикально-сверлильных станках покондукторусосменойинструментаибыстросменных втулоквкондукторах;

в крупносерийном и массовом производствах – на агрегатных многошпиндельных одно- и многопозиционных станках, вертикально-сверлильных станках с многошпиндельными головками и на протяжных станках.

Маршрут обработки основных отверстий имеет варианты:

сверление, зенкерование, одноили двукратное развертывание или двойное растачивание;

сверление и протягивание (для отверстий диаметром более 30 мм), полученные в заготовке прошиванием или литьем, сверление заменяют предварительным зенкерованием.

Обеспечение параллельности осей и межосевого расстояния основных отверстий достигается следующим образом (в порядке убывания точности):

одновременной обработкой несколькими инструментами на многошпиндельных станках;

последовательной обработкой при неизменном закреплении заготовки;

последовательной обработкой на разных станках, в разных приспособлениях.

030 Обработка шпоночных пазов или шлицевых поверхностей в основных отверстиях.

035 Обработка вспомогательных отверстий с нарезанием в них резьб (если нужно), пазов и уступов.

Технологическая база – основные отверстия (одно или два) и их торцы.

040 Плоское шлифование торцов втулок.

Выполняется при повышенных требованиях к шероховатости и взаимному расположению торцов втулок на плоскошлифовальном станке с переустановкой. Технологическая база – торцы втулок.

045 Контрольная.

В зависимости от конкретных условий последовательность обработки поверхностей рычагов может изменяться. Применяют варианты маршрута, в которых операции 010 и 020 меняются местами или объединяются.

Маршрутобработкирычаговсторцамивтулоквразныхплоскостях:

обрабатывают торцы втулок с одной стороны;

обрабатывают основные отверстия с той же стороны;

обрабатывают торцы втулок с другой стороны;

обрабатывают оставшиеся поверхности.