Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрорадиозмеритель. ответы.docx
Скачиваний:
16
Добавлен:
05.03.2016
Размер:
116.1 Кб
Скачать

17. Несмотря на то что приборы разных систем по своему устройству естественно различаются, ряд деталей и узлов, могут быть общими для всех электромеханических приборов.

Корпус прибора защищает измерительный механизм от внешних воздействий и от попадания в него пыли, а также воды и газов. Корпус чаще всего выполняют из пластмассы. Размеры и формы корпуса различны.

Приспособление для установки подвижной части называется опорой (рис.2,1).

Керн 1 запрессован в буксу 2, приклеенную к подвижной части 3. В случае применения оси в виде алюминиевой трубки керн запрессовывается в ось. Камень 4 завальцован в винт 5, укрепленный в неподвижной части 6 измерительного механизма. Наличие винта позволяет установить необходимый зазор между керном и камнем.

Опоры являются важнейшими узлами прибора и во многом определяют его качество.

В современных приборах для повышения точности отсчета широко используют многошкальные отсчетные устройства, позво­ляющие увеличить длину шкалы, число ее делений, длину деления, уменьшить цену деления.

18. Вращающий момент – М- определяется скоростью изменения энергии электромагнитного поля , сосредоточенной в механизме, по углу отклонения .

Противодействующий момент - М- создается, как правило, при помощи спиральных пружин и растяжек

где: W – удельный противодействующий момент на единицу угла закручивания пружины (определяется её материалом, длиной и т.д.).

Момент успокоения – Мусп- момент сил сопротивления движению. Всегда направлен встречно вращающему моменту.

р- коэффициент успокоения (демпфирования) подвижной части.

После подстановки всех составляющих момента в основное уравнение получим:

    или   

19. Магнитоэлектрические измерительные преобразователи

Магнитоэлектрические преобразователи выделяются среди других групп электромеханических преобразователей широтой и разнообразием применения, высокими метрологическими характеристиками, а также многотипностью. Отечественной промышленностью серийно выпускаются магнитоэлектрические преобразователи вплоть до класса точности 0,05 и с минимальным током полного отклонения до 0,1 мкА.

Наиболее широко магнитоэлектрические преобразователи используются при создании амперметров и вольтметров постоянного тока, омметров, гальванометров постоянного тока, баллистических гальванометров для измерений малых количеств электричества, а также приборов для измерений в цепях переменного тока (осциллографические гальванометры, вибрационные гальванометры, выпрямительные, термоэлектрические и электронные приборы на базе магнитоэлектрических преобразователей).

Принцип действия магнитоэлектрических преобразователей основан на взаимодействии магнитных полей постоянного магнита и проводника с током, конструктивно выполненного в виде катушки (рамки).

Практически все магнитоэлектрические преобразователи можно разделить на две основные разновидности:

- преобразователи с подвижной катушкой и неподвижным магнитом;

- преобразователи с неподвижной катушкой и подвижным магнитом.

Конструктивно преобразователи обеих разновидностей могут быть выполнены:

- с внешним (по отношению к рамке) магнитом;

- с внутрирамочным (внутренним) магнитом.

Кроме того, они мoгут различаться креплением подвижной части, способом создания противодействующего момента, способом успокоения подвижной части и др.

В настоящее время более широкое применение получили магнито-электрические преобразователи с неподвижным магнитом и подвижной катушкой.

Существует несколько систем стрелочных приборов: электромагнитные, магнитоэлектрические, электродинамические. Для радиотехнических же измерений применяют главным образом приборы магнитоэлектрической системы, обладающие по сравнению с приборами других систем рядом преимуществ, в том числе высокой чувствительностью, большой точностью результатов измерений и равномерностью шкал.

20. Уравнение шкалы – математическая зависимость, показывающая связь между измеряемой величиной и углом отклонения стрелки прибора α

1. Энергия электромагнитного поля : IWэ⋅=ψ, где

I – ток, протекающий по катушке. Ψ – потокосцепление подвижной катушки,

2. αωψ⋅⋅⋅=SB, где В – индукция в воздушном зазоре между сердечником и полюсными

21. Электромагнитный механизм состоит из неподвижной катушки и укрепленной на оси подвижной пластинки из магнитномягкого материала. При наличии в катушке тока создается магнитное поле, которое намагничивает ферромагнитную пластинку, и она втягивается внутрь катушки. Возникающий при этом вращающий момент пропорционален квадрату тока. Часто квадратичную шкалу выравнивают, подбирая соответствующую форму ферромагнитной пластинки.

Все электрические приборы электромеханического действия снабжены неподвижной проградуированной шкалой, отсчёт по которой обычно производится по указательной подвижной стрелке (иногда светового зайчика, образуемого подвижным зеркалом), положение которой определяется равенством вращательного момента и момента сопротивления. Обычно момент сопротивления создаётся пружиной или торсионом (растяжкой), работающей на скручивание.

22. Уравнение шкалы электромагнитных измерительных приборов.

Уравнение шкалы прибора выглядит следующим образом:

Из уравнения видно, что шкала не равномерна и носит квадратичный характер. Для уменьшения неравномерности шкалы прибора необходимо, чтобы чувствительность была также неравномерна в зависимости от угла поворота. Это достигается выбором формы лепестка.

23. Схема и принцип действия индукционных измерительных приборов.

В индукционных измерительных механизмах перемещение подвижной части происходит вследствие взаимодействия переменных магнитных потоков с токами, наведенными в диске подвижной части механизма. 

В индукционном измерительном механизме вращающий момент создается воздействием результирующего магнитного поля двух электромагнитов переменного тока на подвижную часть - алюминиевый диск, в котором это поле индуктирует вихревые токи. Электромагниты возбуждаются измеряемыми переменными токами. Поэтому значение вращающего момента зависит от значений токов в обоих электромагнитах и угла сдвига фаз между ними. Это ценное свойство индукционного измерительного механизма положено в основу построения приборов для измерения мощности и энергии в цепях переменного тока.

Принцип действия индукционных измерительных механизмов основан на взаимодействии магнитных потоков электромагнитов и вихревых токов, индуктированных магнитными потоками в подвижной части, выполненной в виде алюминиевого диска.

24.

29. Осциллографом называется прибор для наблюдения и регистрации электрических сигналов, а также для измерения их параметров. Основная функция осциллографа заключается в воспроизведении в графическом виде различных электрических колебаний (осциллограмм). При помощи осциллографа можно измерять различные параметры сигнала: амплитуду, частоту, длительность сигнала, длительность фронта, коэффициент модуляции и др.

 Принцип действия осциллографа

Принцип действия осциллографа основан на явлении свечения люминесцирующего экрана электронно-лучевой трубки (ЭЛТ) в точке воздействия на экран сфокусированного электронного луча. Источником электронов является оксидный катод 2, нагреваемый подогревателем 1. С поверхности нагретого катода вылетают электроны, стремясь к высокому положительному потенциалу анодов 4 и 5.

30. По назначению и способу вывода измерительной информации:

  • Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)

  • Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph

По способу обработки входного сигнала

  • Аналоговый

  • Цифровой

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

31. Измери́тельный преобразова́тель — техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.) или применяется вместе с каким-либо средством измерений.

32. Измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству.

Измерительная система предназначена для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и/или использования в автоматических системах управления.

В зависимости от назначения измерительные системы подразделяются на: измерительные информационные, измерительные контролирующие, измерительные управляющие и др.

38. Для определения цены  деления (ЦЦ) шкалы прибора необходимо:

А) из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);

Б) найти разницу между значениями двух соседних числовых меток {А и Б) шкалы и разделить на количество делений между ними (n).

39. Магнитоэлектрические измерительные приборы имеют широкое и разнообразное применение: в качестве амперметров и вольтметров в цепях постоянного тока; измерительных элементов - в устройствах для измерений разнообразных неэлектрических величин ( температуры, давлений и др.); в гальванометрах пестоян-ного тока и пр. Приборы магнитоэлектрической системы могут быть изготовлены очень большой степени точности и высокой чувствительности.

Достоинства электромагнитных измерительных приборов. Угол отклонения стрелки электромагнитного измерительного прибора зависит от квадрата тока. Это говорит о том, что приборы электромагнитной системы могут работать в цепях постоянного и переменного тока.

При протекании по катушке переменного тока подвижный сердечник перемагничивается одновременно с изменением направления магнитного поля, и направление вращающего момента не меняется, то есть изменение знака тока не влияет на знак угла отклонения. Показание прибора в цепи переменного тока пропорционально действующим значениям измеряемых величин.

Электромагнитные измерительные приборы просты по устройству, дешевы, особенно щитовые. Они могут непосредственно измерять большие токи, так как катушки у них неподвижны и их легко изготовить из проводов с большой площадью сечения.

Промышленность изготовляет амперметры электромагнитной системы для непосредственного включения на токи до 150 А.

Электромагнитные измерительные приборы выдерживают не только кратковременные, но и длительные перегрузки, если таковые возникают в процессе измерения.

Недостатки электромагнитных измерительных приборов. К недостаткам электромагнитных измерительных приборов можно отнести: неравномерность шкалы и относительно низкую чувствительность при измерении малых токов, то есть сравнительно низкую точность измерения в начале шкалы, зависимость показаний приборов от влияния внешних магнитных полей, низкий частотный диапазон измерений, большую чувствительность приборов к колебаниям частот тока и большое их собственное потребление (достигающее 2 Вт у амперметров на токи до 10 А и 3 - 20 Вт у вольтметров в зависимости от напряжения).

У многих приборов шкала близка к равномерной.

Электромагнитные измерительные приборы подвержены влиянию внешних магнитных полей, так как имеют очень слабое собственное магнитное поле. Дело в том, что катушки изготовляют без ферромагнитных сердечников, поэтому создаваемое в них магнитное поле замыкается по воздуху, а известно, что воздух представляет собой, среду с очень большим магнитным сопротивлением. Для устранения влияния магнитных полей широко используют различные магнитные экраны или изготовляют приборы в астатическом исполнение

В астатических измерительных приборах вместо одной катушки с сердечником применяют две неподвижные катушки и два сердечника, соответственно насаженных на одну ось со стрелкой. Обмотки катушек соединены между собой последовательно и так, что при прохождении через них измеряемого тока в них создаются магнитные потоки, направленные навстречу один другому.

Если измерительный прибор оказывается во внешнем магнитном поле, то оно усиливает магнитное поле у одной катушки и уменьшает у другой. Следовательно, увеличение вращающего момента у одной катушки компенсируется таким же уменьшением вращающего момента у второй. Так компенсируется влияние внешнего однородного магнитного поля. Если внешнее магнитное поле неоднородно, то происходит только частичная компенсация.

40. Измери́тельный генера́тор — электронное устройство, мера для воспроизведения электромагнитного сигнала (синусоидального, импульсного, шумового или специальной формы). Генераторы применяются для проверки и настройки радиоэлектронных устройств, каналов связи, при поверке и калибровке средств измерений и в других целях.

Измерительные генераторы сигналов. При испытаниях, исследованиях, измерениях режимов различных радиоэлектронных схем необходимы источники сигналов самых разнообразных частот и форм. С помощью этих источников, называемых измерительными генераторами сигналов, определяют характеристики устройств, например амплитудно-частотные и переходные характеристики, коэффициент шума и др.; измеряют ряд параметров сигналов методом сравнения, используя источник в качестве меры (частоту гармонического напряжения, частоту следования импульсов); градуируют измерительные приборы, в частности вольтметры; имитируют сигналы, поступающие в исследуемую аппаратуру при реальных условиях ее работы; питают измерительные схемы при определении коэффициента стоячей волны, полных сопротивлений нагрузки и т.п.