Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия реферат.docx
Скачиваний:
74
Добавлен:
01.03.2016
Размер:
96.4 Кб
Скачать

Реакции комплексообразования

В организме d-элементы представлены как микроэлементы, существующие или в виде гидратированных, гидролизованных ионов; но чаще в виде бионеорганических комплек­сов. Они выступают в качестве сильных комплексообразователей, что обусловлено нали­чием на d-подуровне предвнешнего уровня валентных электронов. Например, в комплексе [CdCl4]2-. Но чаще способность образовывать комплексные соединения обусловлена на­личием в их атомах свободных орбиталей (одной s-, трех р- и пяти d-орбиталей), проявляя координационное число равное 6, реже 2, 3, 5 и 8 для образования координационной связи с полидентными лигандами с образованием комплексных соединений хелатного типа (биокастеров, металлопорфириновых комплексов, гетеровалентных и гетероядерных со­единений). (Смотрите тему «Комплексные соединения», раздел 5.2 и 5.3).

Склонность ионов d-элементов к гидролизу и полимеризации

В кислых средах ионы d-элемента находятся в виде  гидратированных ионов [М(Н2О)m]n+. При повыше­нии рН гидратированные ионы многих d-элементов вследствие большого заряда и небольшого размера иона обладают высоким поляризующим влиянием на молекулы воды, акцепторной способностью к гидроксид-ионам, подвергаются гидролизу катионного типа, образуют прочные ковалентные связи с ОН-. Процесс заканчивается либо образованием основных солей [М(ОН)m](m-n)+, либо нерастворимых гидроксидов М(ОН)n, либо гидроксокомплексов [М(ОН)m](n-m)-. Процесс гидролитического взаимодействия может протекать с образованием многоядерных комплексов в результате реакции полимеризации.

Биологическая роль d-элементов (переходных элементов)

Микроэлементы и ферменты. Представление о металлоферментах. Специфические и неспецифические ферменты. Роль ионов металлов в ферментах. Горизонтальное сходство в биологическом действии d-элементов.Синергизм и антагонизм элементов.

Элементы, содержание которых не превышает 10-3%, входят в состав ферментов, гормонов, витаминов и других жизненно важных соединений. Для белкового, углеводного и жирового обмена веществ необходимы: Fe, Co, Mn, Zn, Мо, V, В, W; в синтезе белков уча­ствуют: Mg, Мn, Fe, Со, Си, Ni, Сr, в кроветворении – Со, Ti, Си, Mn, Ni, Zn ; в дыхании - Mg, Fe, Сu, Zn, Mn и Co. Поэтому микроэлементы нашли широкое применение в медицине, в качестве микроудобрений для полевых культур, подкормки в животноводстве, птицеводстве и рыбоводстве. Микроэлементы входят в состав большого числа биорегуляторов живых систем, в основе которых лежат биокомплексы. Ферменты – это особые белки, ко­торые действуют как катализаторы в биологических системах. Ферменты – уникальные катализаторы, обладающие непревзойденной эффективностью действия и высокой селек­тивностью. Пример эффективности протекания реакции разложения перекиси водорода 2Н2О2 ® 2Н2О +О2 в присутствии ферментов приведен в таблице 6.

Энергия активации (Ео) и относительная скорость реакции  разложения Н2О2при отсутствии и в присутствии различных катализаторов

Катализатор

Еа кДж/моль

Относительная скорость реакция при 300 к.

Без катализатора

70

1

Pt (гетерогенный)

45

2·103

Ионы железа (гомогенный)

42

8·103

Каталаза

7

9·103

В настоящее время известно более 2000 ферментов, многие из которых катализируют одну реакцию. Активность большой группы ферментов проявляется только в присутствии определенных соединений небелковой природы, называемых кофакторами. В качестве ко­факторов выступают ионы металлов или органические соединения. Примерно третья часть ферментов активируется переходными металлами.

Ионы металлов в ферментах выполняют ряд функций: являются электрофильной группой активного центра фермента и облегчают взаимодействие с отрицательно заряженными участками молекул субстрата,  формируют каталитически активную конформацию структуры фермента (в формировании спиральной структуры РНК, участвуют ионы цинка и марганца),  участвуют в транс­порте электронов (комплексы переноса электрона). Способность иона металла выполнять свою роль в активном центре соответствующего фермента зависит от способности иона металла к комплексообразованию,   геометрии и устойчивости образуемого комплекса. Это обеспечивает повышение селективности фермента по отношению к субстратам, активации связей в ферменте или субстрате посредством координации и изменении формы субстрата в соответствии со стерическими требованиями активного центра.

Биокомплексы различа­ются по устойчивости. Одни из них настолько прочны, что постоянно находятся в организме и выполняют определенную функцию. В тех случаях, когда связь кофактора и белка фермента прочна и разделить их трудно, его называют «простетической группой». Такие связи обнаружены в ферментах, содержащих гем-комплексное соединение железа с про­изводным порфина. Роль металлов таких комплексов высокоспецифична: замена его даже на близкий по свойствам элемент приводит к значительной или полной утрате физиологической активности. Данные ферменты относят к специфическим ферментам.

Примерами таких соединений является хлорофилл, полифенилоксидаза, витамин В12, гемоглобин и некоторые металлоферменты (специфические ферменты). Немногие ферменты  участвуют только в одной определенной или единственной реакции.

Каталитические свойства большинства ферментов определяются активным центром, образуемым разными микроэлементами. Ферменты синтезируются на период выполнения функции. Ион металла выполняет роль активатора и его можно заменить ионом другого металла без потери физиологической активности фермента. Такие отнесены к неспецифическим ферментам.

Ниже приведены ферменты, в которых ионы различных металлов выполняют сходные функции.

Ферменты, в которых ионы различных металлов выполняют сходные функции

Фермент

Микроэлементы, активирующие фермент

Карбоксилаза

Mn2+, Co2+, Cu2+, Fe2+, Ca2+, Zn2+

Полипептидаза

Zn2+, Co2+

Лецитиназа

Zn2+, Mg2+, Co2+, Zn2+, Mn2+

Аргиназа

Co2+, Mn2+, Ni2+, Fe2+

Один микроэлемент может активировать работу различных ферментов, а один фермент может быть активирован различными микроэлементами. Наибольшую близость в биологическом действии оказывают ферменты с микроэлементами в одинаковой степенью окисления +2. Как видно для микроэлементов переходных элементов в их биологическом действии характерно больше горизонтальное сходство, чем вертикальное в периодической системе Д.И. Менделеева (в ряду Ti-Zn).Пpи решeнии вопроса о применении того или иного микроэлемента необходимо учитывать не только наличие подвижных форм этого элемента, но и других, имеющих одинаковую степень окисления и способных заменять друг друга в составе ферментов.

Промежуточное положение между специфическими и неспецифическими ферментами занимают некоторые металлоферменты. Ионы металлов выполняют функцию кофактора.  Повышение прочности биокомплекса фермента повышает специфичность его биологического действия.  На эффективность ферментативного действия иона металла фермента оказывает  влияние его степень окисления. По интенсивности влияния микроэлементы расположены в следующий ряд:

Ti4+®Fe3+®Cu2+®Fe2+®Mg2+®Mn2+. Ион Мn3+ в отличии от иона Мn2+, очень прочно связан с белками, причем преимущественно с кислородосодержащими группами совместно Fe3+ входит в состав металлопротеинов.

Микроэлементы в комплексонатной форме выступают в организме в качестве фактора, определяющего, по-видимому, высокую чувствительность клеток к микроэлементам путем ихучастия в создании высокого градиента концентрации.  Значения атомных и ионных радиусов, энергий ионизации, координационных чисел, склонность к образованию связей с одними и теми же элементами в молекулах биолигандов обусловливают эффекты, наблюдаемые при взаимном замещении ионов: может происходить с усилением (синергизм), так и с угнетением ихбиологической активности (антагонизм) замещаемого элемента.  Ионы d-элементов в степени окисления +2 (Mn, Fe, Co, Ni, Zn) имеют сходные физико-химические характеристики атомов (электронную структуру внешнего уровня, близкие радиусы ионов, тип гибридизации орбиталей, близкие значения констант устойчивости с биолигандами). Сходство физико-химических характеристик комплексообразователя определяет близость их биологического действия и взаимозаме­няемость. Указанные выше переходные элементы стимулируют процессы кроветворения, усиливают процессы обмена веществ. Синергизм элементов в процессах кроветворения связан возможно, с участием ионов этих элементов в различных этапах процесса синтеза форменных элементов крови человека.

Для s - элементов I группы характерен по сравнению с другими элементами своего периода небольшой заряд ядер атомов, невысокий потенциал ионизации валентных электронов, большой размер атома и увеличение его в группе сверху вниз. Все это определяет состояние их ионов в водных растворах в виде гидратированных ионов. Наибольшее сходство лития с натрием обусловливает их взаимозаменяемость, синергизм их действия. Деструктирующие свойства в водных растворах ионов калия, рубидия и цезия, обеспечивает их лучшую мембранопроницаемость, взаимозаменяемость и синергизм их действия. Концентрация К+ внутри клеток в 35 раз выше чем вне ее, а концентрация Na+ во внеклеточной жидкости в 15 раз больше чем внутри клетки. Эти ионы в биологических системах являются антагонистами. s - Элементы II группы в организме находятся в виде соединений образованных фосфорной, угольной и карбоновых кислотами. Кальций, содержащийся в основном в костной ткани, по своим свойствам близок к стронцию и барию, которые могут замещать его в костях. При этом наблюдаются как случаи синергизма, так и антагонизма. Ионы кальция являются также антагонистами ионов натрия, калия и магния. Сходство физико-химических характеристик ионов Ве2+ и Mg2+обусловливает их взаимозаменяемость в соединениях, содержащих связи Mg–N и Mg–О. Этим можно объяснить ингибирование магнийсодержащих ферментов при попадании в организм бериллия. Бериллий - антагонист магния. Следовательно, физико-химические свойства и биологическое действие микроэлементов определяются строением атомов. Большинство биогенных элементов - это члены второго, третьего и четвертого периодов периодической системе Д.И. Менделеева. Это относительно легкие атомы, со сравнительно небольшим зарядом ядер их атомов. Положение р-элементов в периодической системе элементов.

Период

Группа

IIIA

IVA

VA

VIA

VIIA

VIIIА

2

[Br]

(C)

(N)

(O)

(F)

Ne

3

[Al]

[Si]

(P)

(S)

(Cl)

Ar

4

Ga

[Ge]

[As]

[Se]

[Br]

Kr

5

In

Sn

Sb

Te

(I)

Xe

6

Tl

Pb

Bi

Po

At

Rn

7

р1

р2

р3

р4

р5

Р6

() - незаменимые элементы, [ ] – биогенные элементы

В периодах слева направо возрастает заряд ядер, влияние которого превалирует над увеличением сил взаимного отталкивания между электронами. Поэтому потенциал иони­зации, сродство к электрону, а, следовательно, и акцепторная способность и неметалличе­ские свойства в периодах увеличиваются. Все элементы, лежащие на диагонали Вr – At и выше являются неметаллами и образуют только ковалентные соединения и анионы. Все остальные р-элементы (за исключением индия, талия, полония, висмута которые проявля­ют металлические свойства) являются амфотерными элементами и образуют как катионы, так и анионы, причем и те, и другие сильно гидролизуется. Большинство р-элементов-неметаллов – биогенные (исключение – благородные газы, теллур и астат). Из р-элементов - металлов – к биогенным относят только алюминий. Различия в свойствах соседних элементов, как внутри; так и по периоду: выражены значительно сильнее, чем у s-элементов. р-Элементы второго периода – азот, кислород, фтор обладают ярко выражен­ной способностью участвовать в образовании водородных связей. Элементы третьего и по­следующего периодов эту способность теряют. Их сходство заключается только в строении внешних электронных оболочек и тех валентных состояний, которые возникают за счет неспаренных электронов в невозбужденных атомах. Бор, углерод и особенно азот, сильно отличаются от остальных элементов своих групп (наличие d- и f-подуровней).

Все р-элементы и в особенности р-элементы второго и третьего периодов (С, N, Р, О, S, Si, Cl) образуют многочисленные соединения между собой и с s-, d- и f-элементами. Боль­шинство известных на Земле соединений – это соединения р-элементов. Пять главных (макробиогенных) р-элементов жизни – О, Р, С, N и S – это основной строительный мате­риал, из которого сложены молекулы белков, жиров, углеводов и нуклеиновых кислот. Из низкомолекулярных соединений р-элементов наибольшее значение имеют оксоанионы: СО32-, НСО3-, С2O42-, СНзСОО-, РО43-, НРO42-, H2PO4-, SO42- и галогенид-ионы. р-Элементы имеют много валентных электронов, обладающих различной энергией. По­этому в соединениях проявляют различную степень окисления. Например, углерод прояв­ляет различные степени окисления от – 4 до +4. Азот – от -3 до +5, хлор – от -1 до +7.

В процессе реакции р-элемент может отдавать и принимать электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств элемента с которым вступает во взаимодействие. Это порождает широкий ассортимент образуемых ими соединений. Взаимопереход атомов р-элементов различных стпеней окисления, в том числе и за счет метаболических окислительно-восстановительвых процессов (например, окисление спиртовой группы в их альдегидную и далее в карбоксильную  и так далее) вызывает богатство их химических превращений.

1). В IA группу входят литий, натрий, калий, рубидий и цезий. Эти элементы называют щелочными элементами. В эту же группу входит искусственно полученный малоизученный радиоактивный (неустойчивый) элемент франций. Иногда в IA группу включают и водород . Атомы элементов IА группы имеют по одному валентному электрону на s подуровне внешнего энергетического уровня. Это обуславливает проявление степени окисления +1. Все элементы IА группы сходны по свойствам, что объясняется однотипным строением не только внешней, валентной оболочки, но и предвнешней (исключение литий). С ростом радиуса атома в группе IА ослабевает связь валентного электрона с ядром. Соответственно, уменьшается энергия ионизации атомов. Так как радиус атома калия больше, чем радиус атома натрия, то энергия ионизации калия меньше, чем у натрия. В результате ионизации образуются катионы Э+, имеющие устойчивую конфигурацию благородных газов. Химическая активность металлов IА группы возрастает закономерно с увеличением радиуса атома и уменьшением их способности к гидратированию (чем меньше способность к гидратированию, тем активнее металл). Так как радиус атома калия больше, чем радиус атома натрия, то способность к гидратации для катиона калия будет ниже, чем для катиона натрия, а, следовательно, химическая активность катиона калия выше, чем у катиона натрия. Вследствие незначительного поляризующего действия (устойчивая электронная структура, большие размеры, малый заряд ядра) комплексообразование для ионов щелочных металлов малохарактерно. Вместе с тем, они способны образовывать комплексные соединения с некоторыми биолигандами (КЧ для натрия и калия может принимать значения 4 и 6). Способность образовывать донорно-акцепторные связи с соответствующими лигандами едва намечается у натрия. У калия имеется значительная тенденция к использованию имеющихся в атоме вакантных d-орбиталей. Например, образование комплексов калия с антибиотиком валиномицином. Валиномицин образует с калием прочные комплексы, связывание этого антибиотика с натрием очень незначительно. Большинство солей щелочных металлов хорошо растворимы в воде (исключение составляют некоторые соли лития).

Биологическая роль натрия, калия. Натрий и калий относятся к жизненно необходимым элементам, постоянно содержатся в организме, участвуют в обмене веществ. Содержание натрия в организме человека массой 70 кг – около 60 г: 44% - во внеклеточной жидкости, 9% - во внутриклеточной. Остальное количество натрия находится в костной ткани – место депонирования иона Na+ в организме. В организме человека натрий находится в виде его растворимых солей: хлорида, фосфата, гидрокарбоната. Распределен по всему организму: в сыворотке крови, в спинномозговой жидкости, в глазной жидкости, в пищеварительных соках, в желчи, в почках, в коже, в костной ткани, в легких, в мозге. Натрий является основным внеклеточным ионом. Концентрация ионов Na+ внутри клетки примерно в 15 раз меньше, чем во внеклеточной жидкости. Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвуют в поддержании постоянного осмотического давления биожидкости (осмотического гомеостаза). В виде противоионов в соединениях с фосфорной кислотой (Na2HPO4 + NaH2PO4) органическими кислотами натрий обеспечивает кислотно-основное равновесие организма. Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов. Вместе с ионами калия, магния, кальция, хлора ионы натрия участвуют в передаче нервных импульсов. При изменении содержания натрия в организме происходят нарушения функций нервной, сердечно-сосудистой систем, гладких и скелетных мышц. Натрия хлорид NaCl – основной источник соляной кислоты для желудочного сока. Ионы натрия принимают участие в формировании разности потенциалов на мембране. Содержание калия в организме человека массой 70 кг – около 160 г.: 2% - во внеклеточной жидкости, 98% - во внутриклеточной. В организме человека калий находится: в крови, в почках, в сердце, в костной ткани, в сердце, в мозге. Калий является основным внутриклеточным ионом. Концентрация ионов К+ внутри клетки примерно в 35 раз больше, чем во внеклеточной жидкости. Ионы калия играют важную роль в физиологических процессах – сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях. Являются важными активаторами внутриклеточных ферментов.

2). В группу IIА входят 6 элементов: бериллий, магний, кальций, стронций, барий, радий. Для элементов IIА группы характерна большая, чем для элементов IА группы способность к комплексообразованию. Атомы элементов IIА группы имеют по два валентных электрона на s подуровне внешнего энергетического уровня. В нормальном состоянии у атомов этих элементов нет неспаренных электронов, но при переходе атомов в возбужденное состояние один из s валентных электронов переходит на р-подуровень. Это обуславливает проявление степени окисления +2. Степени окисления больше +2 элементы IIА группы не проявляют. Несмотря на то, что число валентных s электронов у атомов IIА группы одинаково, свойства магния икальция отличаются друг от друга. Это связанно с тем, что в атоме кальция, в отличие от атома магния, имеются свободные d-орбитали, близкие по энергии к ns орбиталям. Магний и кальций существенно различаются размерами атомов и ионов:

· металлический радиус атома Mg = 160 пм;

· металлический радиус атома Ca = 197 пм.

· кристаллический радиус иона Mg2+ = 74 пм;

· кристаллический радиус иона Ca2+ = 104 пм..

Больший размер иона кальция обусловливает и более высокое координационное число этого иона – КЧ (Ca2+) 6, 8, тогда как КЧ (Mg2+) – 6. Прочность комплексных соединений уменьшается по мере увеличения радиуса атома, следовательно, комплексные соединения магния будут более прочными, чем комплексные соединения кальция. Ион Mg2+ образует шестикоординационные соединения регулярной структуры. Ca2+ образует несимметричные комплексы. Кальций предпочтительно координируется с атомами кислорода, магний – с атомами азота. Многие соли щелочноземельных металлов малорастворимы в воде (малорастворимы CaF2, MgF2; практически не растворимы фосфаты кальция и магния). Причем с ростом порядкового номера растворимость солей снижается. Такой характер изменения растворимости солей играет важную роль в биологическом действии катионов этой группы. Уменьшение растворимости кальция фосфата и карбоната по сравнению с фосфатами и карбонатами магния является, по видимому, одной из причин формирования скелета всех живых организмов именно из этих соединений кальция. В живых организмах из ионов кальция и фосфат-ионов образовался кристаллический минерал ГИДРОКСИЛАПАТИТ – Ca10(PO4)6(OH)2 – основное вещество костной и зубной ткани. Магний является макроэлементом, но лучшая растворимость магния фосфата Mg3(PO4)2 и основного карбоната Mg(OH)2)*4MgCO3*H2O объясняет тот факт, что его соединения не сыграли значительной роли в построении скелета. Биологическая роль кальция и магния Магний Формально относится к макроэлементам. Общее содержание в организме 0,027% (около 20 г). В наибольшей степени магний концентрируется в дентине и эмали зубов, костной ткани. Накапливается в поджелудочной железе, скелетных мышцах, почках, мозге, печени и сердце. Является внутриклеточным катионом. Концентрация ионов Mg2+ внутри клеток примерно в 2,5-3 раза выше, чем во внеклеточной жидкости. Во внутриклеточной жидкости АТФ и АДФ присутствуют, в основном, в виде комплексов MgАТФ 2- и MgАДФ 2-. Кальций Относится к макроэлементам. Общее содержание в организме – 1,4%. Содержится в каждой клетке человеческого организма. Основная масса – в костной и зубной тканях. В костях и зубах взрослого человека около 1 г кальция находится в виде нерастворимогокристаллического минерала ГИДРОКСИЛАПАТИТА – Ca10(PO4)6(OH)2. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови.

3). Азот в природе встречается главным образом в свободном состоянии. В воздухе объёмная доля его составляет 78,09%. Соединения азота в небольших количествах содержатся в почвах. Азот входит в состав белковых веществ и многих естественных органических соединений. Общее содержание азота в земной коре 0,01%. В технике азот получают из жидкого воздуха: воздух переводят в жидкое состояние, а затем испарением отделяют азот от менее летучего кислорода (tкип  азота  -195,8оС, кислорода   -183оС). Молекула азота  образована тройной ковалентной связью атомов: двумя пи-связями и одной сигма - связью. Молекула азота распадается на атомы при температуре 2000оС. Жидкий азот хранится в сосуде Дьюра. Физические свойства азота. Азот – газ без цвета, вкуса и запаха, легче воздуха, растворимость в воде меньше, чем у кислорода. Химические свойства азота. Молекула азота состоит из двух атомов, длина между ними очень мала, Тройная связь и её малая длина делают молекулу весьма прочной. Этим объясняется малая реакционная способность азота при обычной температуре.

Получение и применение аммиака. В лабораторных условиях аммиак обычно получают слабым нагреванием смеси хлорида аммония с гашеной известью:

                                 2NH4Cl + Ca (OH)2 = CaCl2 + 2NH3  + 2H2O

Основным промышленным способом получения аммиака является синтез его из азота  и водорода. Реакция экзотермичная и обратимая:   N2 + 3H2 2NH3 + 92кДж

Она протекает только в присутствии катализатора Губчатого железа с добавками активаторов -  оксидов алюминия, калия, кальция, кремния (иногда и магния)

Физические свойства аммиака. Аммиак – бесцветный газ с характерным резким запахом, почти в два раза легче воздуха. При увеличении давления или охлаждении он легко сжимается в бесцветную жидкость. Аммиак хорошо растворим в воде. Раствор аммиака в воде называется аммиачной водой или нашатырным спиртом. При кипячении растворённый аммиак улетучивается из раствора.

Химические свойства аммиака. Большая растворимость аммиака в воде обусловлена образованием водородных связей между их молекулами. Гидроксид – ионы обуславливают слабощелочную (их мало) реакцию аммиачной воды. При взаимодействии гидроксид - ионов с ионами NH4+ снова образуются молекулы NH3  и  H2O, соединённые водородной связью, т. е. реакция протекает в обратном направлении. В аммиачной воде наибольшая часть аммиака содержится в виде молекул NH3, равновесие смещено в сторону образования аммиака, поэтому она пахнет аммиаком. Получение азотной кислоты. В лабораторных условиях азотная кислота получается из её солей действием концентрированной серной кислоты:

                                      KNO3 + H2SO4 = HNO3 + KHSO4

Реакция протекает при слабом нагревании (сильное нагревание разлагает HNO3). В промышленности азотная кислота получается каталитическим окислением аммиака, который в свою очередь, образуется как соединения водорода и азота воздуха. Весь процесс получения азотной кислоты можно разбить на три этапа:

1.   Окисление аммиака на платиновом катализаторе до NO:

                     4NH3 + 5O2 = 4NO +6H2O

2.   Окисление кислородом воздуха NO до NO2:

                     2NO + O2 =2NO2­

3.   Поглощение NO2 водой в присутствии избытка кислорода:

                           4NO2 + 2H2O + O2 = 4HNO3

Физические свойства. Азотная кислота – бесцветная жидкость с едким запахом. Она гигроскопична, «дымит» на воздухе, т. к. пары её с влагой воздуха образуют капли тумана. Смешивается с водой в любых соотношениях. Кипит при 86оС. Химические свойства. В HNO3 валентность азота равна 4, степень окисления +5 Применение. Большие количества её расходуются на приготовление азотных удобрений, взрывчатых веществ, лекарственных веществ, красителей, пластических масс, искусственных волокон других материалов. Дымящая азотная  применяется в ракетной технике в качестве окислителя ракетного топлива. Фосфор – аналог азота, т. к.  электронная конфигурация валентных электронов, как и у азота, s2p3. Однако по сравнению с атомом азота атом фосфора характеризуется меньшей энергией ионизации и имеет больший радиус. Это означает, что неметаллические признаки у фосфора выражены слабее, чем у азота. Поэтому для фосфора реже встречаются степень окисления -3 и чаще +5. Мало характерны и другие степени окисления. Нахождение в природе. Общее содержание фосфора в земной коре составляет 0,08%. В природе фосфор встречается только в виде соединений; важнейшее из них – фосфат кальция – минерал апатит. Физические свойства. Фосфор, в отличие от азота имеет несколько аллотропных модификаций: белый, красный, черный и др. Белый фосфор – бесцветное и очень ядовитое вещество. Получается конденсацией паров фосфора. Не растворяется в воде, но хорошо растворяется в сероуглероде. При длительном слабом нагревании белый фосфор переходит в красный. Красный фосфор – порошок красно – бурого цвета, не ядовит, нерастворим в воде и сероуглероде, представляет смесь нескольких аллотропных модификаций, которые отличаются друг от друга цветом и некоторыми свойствами. Черный фосфор по внешнему виду похож на графит, жирный на ощупь, обладает полупроводниковыми свойствами. Получается длительным нагреванием белого фосфора при очень большом давлении. Химические свойства. В химическом отношении белый фосфор сильно отличается от красного. Так, белый фосфор легко окисляется и самовоспламеняется на воздухе, поэтому его хранят под водой. Красный фосфор не воспламеняется на воздухе, но воспламеняется при нагревании свыше 240оС. При окислении белый фосфор светится в темноте – происходит непосредственное превращение химической энергии в световую. В жидком и растворенном состоянии, а также в парах при температуре ниже 800оС фосфор состоит из молекул Р4.

4). Атомы элементов VI группы характеризуются  двумя различными структурами внешнего электронного слоя содержащего либо шесть, либо одного или двух электронов. К первому типу, помимо кислорода, относится сера и элементы подгруппы селена (Se, Te, Po). Структура  внешнего слоя атомов серы, селена  и его аналогов придает им  преимущественно неметаллический характер с максимальной отрицательной валентностью, равной двум. Эти элементы должны быть менее активными неметаллами, чем галогены (так как последним не хватает до устойчивой конфигурации лишь по одному электрону). Максимальную положительную валентность серы, селена и его аналогов можно ожидать равной шести, причём электроны должны отдаваться ими легче, чем стоящими в том же горизонтальном ряду галогенами.  Наличие во внешнем слое атомов лишь одного или двух электронов обуславливает металлический характер элементов подгруппы хрома. Вместе с тем их максимальная положительная валентность также должна быть равна шести. Кислород — самый распространенный элемент на Земле. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике. Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H2SO4 в качестве катализатора: 2H2O = 2H2 + O2. Химическая активность кислорода определяется его способностью диссоциировать на атомы O, которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O2пероксиды типа NaO2 и BaO2. Другие же элементы и соединения реагируют только с продуктом диссоциации O2. В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях. Электронная  структура кислорода (1s22s22p4) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O2–. В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная. Формы нахождения серы в природе разнообразны. Иногда она встречается в самородном состоянии, но основная ее масса связана с металлами в составе различных минералов, которые могут быть разбиты на две большие группы: сернистых и сернокислых соединений. Чистая сера представляет собой желтое кристаллическое вещество с плотностью около 2, плавящееся при 119°С и кипящее при 445°С. Она очень плохо проводит тепло и электричество. В воде серанерастворима. Лучшим ее растворителем является сероуглерод (CS2 ) органических растворителях (спиртах, бензоле, сероуглероде и др.).

Химические  свойства. Сера относится к числу, довольно активных неметаллов. Она  хорошо горит в кислороде, образуя  диоксид серы: S + О2 = SO2

При горении  серы в кислороде и на воздухе  образуется также триоксид серы, количество которого в отсутствие катализа незначительно. При пропускании хлора через расплавленную серу образуется монохлорид серы S2Сl2, который затем превращается в SCl2:

2 S + Сl2 = S2Cl2 (хлорид серы (I))

S2Cl2 + Cl2 = 2 SСl2 (хлорид серы (II))

Основными  источниками получения селена служат отходы сернокислотного производства (пыль каналов и пылевых камер, ил промывных башен) и осадки («шламы»), образующиеся при очистке меди электролизом. Ежегодная мировая выработка селена исчисляется сотнями. Соли селенистой кислоты (селенистокислые, или селениты) могут быть получены нейтрализацией растворов H2 SeO3. Селенистая кислота (K1 = 2·10–3, K2 = 5·10–9) может быть получена по реакции:

3Se + 4HNO3 + H2 O = 3H2 SeO3 + 4NO. Ее окислительные свойства выражены не особенно сильно. Так, она окисляет J’, но не способна окислить Вr. Из солей Н2 SеО3 следует отметить малорастворимый селенит серебра – Ag2 SeO3 .

5). К главной подгруппе седьмой группы периодической системы относятся элементы F, CI, Br, I и At. Эти элементы при взаимодействии с металлами способны образовывать типичные соли (KF, NaCl и др.). Атомы всех элементов имеют по одному неспаренному электрону, что определяет их свойства типичных неметаллов. Будучи самым электроотрицательным элементом, фтор в соединениях всегда имеет степень окисления —1. Остальные галогены также имеют степень окисления —1, но для них возможны и положительные степени окисления: +1, +3, +5, +7. Астат может существовать во всех указанных степенях окисления — от —1 до +7, являясь типичным аналогом иода.  В ряду F—С1—Вг—I—At значение сродства к электрону уменьшается. С повышением порядкового номера элемента в ряду F—At увеличиваются радиусы атомов, уменьшается ионизационный потенциал, ослабевают неметаллические свойства и окислительная способность элементов, закономерно изменяются и другие физико-химические свойства элементов. Содержание в земной коре. В земной коре эти элементы содержатся главным образом в виде солей — галидов. Астат — радиоактивный элемент. Основные минералы фтора — плавиковый шпат CaF2. Природные соединения хлора: поваренная соль NaCl. Бром в природе в виде солей калия, натрия и магния содержится в морской воде, иод в небольших концентрациях — в морской воде.  Хлорноватистая кислота  HClO H–O–Cl Физические свойства Существует только в виде разбавленных водных растворов. Получение HCl + HClOCl2 + H2O Химические свойства HClO - слабая кислота и сильный окислитель: 1) Разлагается, выделяя атомарный кислород HCl + OHClO  –на свету

2)     Со щелочами дает соли - гипохлориты KClO + H2OHClO + KOH

Хлористая кислота HClO2 H–O–Cl=O Физические свойства Существует только в водных растворах. Получение Образуется при взаимодействии пероксида водорода с оксидом хлора (IV): 2HClO2 + O2¬2ClO2 + H2O2 Химические свойства HClO2 - слабая кислота и сильный окислитель; соли хлористой кислоты - хлориты:

1)    Взаимодействует с основаниями:                                                                                               KClO2 + H2OHClO2 + KOH

2)       Неустойчива, при хранении разлагается

HCl + HClO3 + 2ClO2¬ + H2O4HClO2 Хлорноватая кислота HClO3

Физические свойства Устойчива только в водных растворах. Получение 2HClO3 + BaSO4Ba (ClO3)2 + H2SO4 Химические свойства HClO3 - Сильная кислота и сильный окислитель; соли хлорноватой кислоты - хлораты:

3P2O5 + 5HCl6P + 5HClO3 KClO3 + H2OHClO3 + KOH Хлорная кислота HClO4

Физические свойства C.C, t°пл.= -101Бесцветная жидкость, t°кип. = 25 Получение KHSO4 + HClO4KClO4 + H2SO4 Химические свойства HClO4 - очень сильная кислота и очень сильный окислитель; соли хлорной кислоты - перхлораты.

1)   С основаниями:                                                                                           KClO4 + H2OHClO4 + KOH

2)     При нагревании хлорная кислота и ее соли разлагаются: 4ClO2¬ + 3O2¬ + 2H2O4HClO4  –t° KCl + 2O2¬KClO4  –t°

6). К d-блоку относятся 32 элемента периодической системы. d-Элементы входят в 4--7-й большие периоды. У атомов IIIБ-группы появляется первый электрон на d-орбитали. В последующих Б-группах происходит заполнение d-подуровня до 10 электронов (отсюда название d-элементы). Строение внешних электронных оболочек атомов d-блока описывается общей формулой (n-1)dansb, где а = 1--10, b = 1--2. Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов. Такое относительно медленное изменение радиусов объясняется так называемым лантаноидным сжатием вследствие проникновения ns-электронов под d-электронный слой. В результате наблюдается незначительное изменение атомных и химических свойств d-элементов с увеличением атомного номера. Сходство химических свойств проявляется в характерной особенности d-элементов образовывать комплексные соединения с разнообразными лигандами. Важным свойством d-элементов является переменная валентность и, соответственно, разнообразие степеней окисления. Эта особенность связана главным образом с незавершенностью предвнешнего d-электронного слоя (кроме элементов IБ- и IIБ-групп). Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов. В низших степенях окисления d-элементы проявляют свойства металлов. С увеличением атомного номера в группах Б металлические свойства закономерно уменьшаются. В растворах кислородсодержащие анионы d-элементов с высшей степенью окисления проявляют кислотные и окислительные свойства. Катионные формы низших степеней окисления характеризуются основными и восстановительными свойствами. а) Медь находится в I группе периодической системы Менделеева; атомный номер 29, атомная масса 63,546; мягкий, ковкий металл красного цвета. Природная медь состоит из смеси двух стабильных изотопов - 63Cu (69,1 % ) и 65Cu (30,9 % ). Медь относится к малоактивным металлам. Стандартный электродный потенциал меди равен +0,34 В, что определяет ее место в ряду стандартных электродных потенциалов: оно находится правее водорода. При обычных условиях она не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белкомцерулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белкагемоглобина в крови позвоночных животных. Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день. При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей. б). Цинк -- необходимый элемент всех растений и животных. В организме взрослого человека больше всего цинка в мышцах (65%), костях (20%). Остальное количество приходится на плазму крови, печень, эритроциты. Наибольшая концентрация цинка в предстательной железе.

Цинк не проявляет переменной валентности. Видимо поэтому его биокомплексы принимают участие во многих биохимических реакциях гидролиза, идущих без переноса электронов. Ион цинка входит в состав более 40 металлоферментов, катализирующих гидролиз эфиров и белков. Биологическая роль цинка. Фармацевты и медики жалуют многие соединения цинка. Со времен Парацельса до наших дней в фармакопее значатся глазные цинковые капли (0,25%-ный раствор ZnSO4). Как присыпка издавна применяется цинковая соль стеариновой кислоты. Феносульфат цинка - хороший антисептик. Суспензия, в которую входят инсулин, протамин и хлорид цинка - новое эффективное средство против диабета, действующее лучше, чем чистый инсулин. И вместе с тем многие соединения цинка, прежде всего его сульфат и хлорид, токсичны. Цинк - один из важных микроэлементов. И в то же время избыток цинка для растений вреден. Биологическая роль цинка двояка и не до конца выяснена. Установлено, что цинк - обязательная составная часть фермента крови, карбоангидразы. Этот фермент содержится в эритроцитах. Карбоангидраза ускоряет выделение углекислого газа в легких. Кроме того, она помогает превратить часть СО2 в ион НСО3, играющий важную роль в обмене веществ. Но вряд ли только карбоангидразой ограничивается роль цинка в жизни животных и человека. И если бы было так, то трудно было бы объяснить токсичность соединений этого элемента. Известно, что довольно много цинка содержится в яде змей, особенно гадюк и кобр. Но в то же время известно, что соли цинка специфически угнетают активность этих же самых ядов, хотя, как показали опыты, под действием солей цинка яды не разрушаются. Как объяснить такое противоречие? Считают, что высокое содержание цинка в яде - это то средство, которым змея от собственного яда защищается. Но такое утверждение еще требует строгой экспериментальной проверки. Ждут выяснения и многие тонкие детали общей проблемы “цинк и жизнь”... в) Молибден -- относится к металлам жизни, является одним из важнейших биоэлементов. Его особенное положение было отмечено 20--25 лет назад Ф. Крином и Л. Орилом. Эти ученые выдвинули идею, что возникновение жизни на Земле происходило не эволюционным путем, а она занесена неведомой цивилизацией из космоса с молибденовых звезд, где жизнь существовала задолго до нас. В биохимических процессах молибден участвует в степенях окисления V и VI. В этом состоянии он создает устойчивые оксоформы. Молибден образует устойчивые оксокомплексы (например, [МоО3(ОН)2] и, видимо, поэтому входит в состав ферментов, обеспечивающих перенос оксогрупп. В крови преобладает Мо(VI), если лигандом будет кислород, то образуются устойчивые изополимолибдат-ионы: МоО42- МоО72- Мо7О246- Мо12O4110- Молибден входит в состав различных ферментов. В организме человека к ним относятся альдегидогидроксидазы, ксантиндегидрогеназы, ксантиноксидазы. Молекулярная масса ксантиноксидазы (КОКС) 250 000. Это молибденсодержащий фермент млекопитающих. Он может катализировать окисление ксантина и других пуринов, а также альдегидов. В ходе ферментативной реакции молибден (VI) переходит в молибден (V), а потом в молибден (IV). В общем виде это будет так: Превращение гипоксантина и ксантина в мочевую кислоту, катализируемое ксантиноксидазой, происходит по схеме Предполагается, что в ходе каталитического процесса молибден образует связь с азотом и кислородом ксантина. Молибден является важнейшим микроэлементом растений, так как биологически активные вещества с его участием обеспечивают мягкую фиксацию азота: превращают в аммиак или азотсодержащие продукты. По сравнению с другими промышленно важными металлами молибден малотоксичен. Потребление молибдена с продуктами питания 0,1--0,3 мг/сут, но необходимое дневное поступление не установлено. Дефицит молибдена вызывает уменьшение активности ксантиноксидазы в тканях. Избыточное содержание молибдена вызывает остеопорозы. г). Для марганца характерны степени окисления +2, +3, +4, -1-6, +7. Для остальных элементов этой группы известны только степени окисления +4 и +7. При взаимодействии марганца с разбавленными кислотами (особенно при нагревании) выделяется водород. Ион марганца Мn2+ в воде существует как аквакомплекс. Поэтому в молекулярно-ионном виде реакция запишется так: Мn + 2Н+ + 6Н2O > [Мn(Н2O)6]2+ + Н2^ Химические свойства соединений марганца. Устойчивые степени окисления марганца +2, +4, +7 в соединениях кислородного и солевого характера. В медицинской практике используются соединения марганца(II) и марганца(VII). Оксид марганца (II) МnО встречается в природе в виде мелких зеленых кристаллов, плохо растворимых в воде. При нагревании на воздухе превращается в разные оксиды: 6МnО + 3O2 > 6МnО2 + 3/2 О2 > 3Мn2О3 +4,5 О2 1000°С> 6МnО3 Оксид марганца (II) растворяется в кислотах: МnО + 2Н+ + 5Н2О > [Мn(Н2О)6]2+ Обработка аквакомплекса [Мn(Н2О)6]2+ при рН = 8,5 в атмосфере водорода приводит к образованию нерастворимого гидроксида марганца (II): [Мn(Н2О)6]2+ + 2ОН- > Мn(OH)2v + 6Н2О гидроксид марганца (II) обладает слабоосновными свойствами, окисляется кислородом воздуха и другими окислителями до марганцеватистой кислоты или ее солей манганитов: Мn(ОН)2 + Н2О2 > Н2МnО3v + Н2О марганцеватистая кислота (бурый осадок). В щелочной среде Мn2+ окисляется до МnО42-, а в кислой до МnО4-: МnSО4 + 2КNО3 + 4КОН > К2МnО4 + 2КNО2 + К2SО4 + 2Н2О Образуются соли марганцовистой Н2МnО4 и марганцовой НМnО4 кислот. Если в опыте in vitro Мn2+ проявляет восстановительные свойства, то in vivo восстановительные свойства Мn2+ слабо выражены. В биологических процессах он не меняет степени окисления. Устойчивые биокомплексы Мn2+ in vivo стабилизируют эту степень окисления. Стабилизирующее влияние появляется в большом времени удержания гидратной оболочки. Для Мn2+ это время равно 100 мкс, тогда как для гидрофильного иона Na+ оно составляет 1 мкс. Оксид марганца (IV) МnО2 является устойчивым природным соединением марганца, которое встречается в четырех модификациях. Все модификации имеют амфотерный характер и обладают окислительно-восстановительной двойственностью. Примеры окислительно-восстановительной двойственности МnО2:

МnО2 + 2КI + 3СО2 + Н2О > I2 + МnСО3 + 2КНСО3

6МnО2 + 2NH3 > 3Мn2О3 + N2 + 3Н2О

4МnО2 + 3О2 + 4КОН > 4КМnО4 + 2Н2О

2МnО2 + 3Сl2 + 8КОН > 2КМnО4 + 6КСl + 4Н2О

Последняя реакция ставит под сомнение расхожее утверждение, что МnО2 в щелочной среде превращается в манганат -- соль Мn (VI), а в кислой -- в перманганат -- соль Мn (VII). Кроме среды на окислительно-восстановительную способность влияют концентрация и потенциал окислителя. Соединения Мn (VI) -- неустойчивы. В растворах могут превращаться в соединения Мn (II), Мn (IV) и Мn (VII): оксид марганца (VI) МnО3 -- темно-красная масса, вызывающая кашель. Гидратная форма МnО3 -- слабая марганцовистая кислота Н2МnO4, которая существует только в водном растворе. Ее соли (манганаты) легко разрушаются в результате гидролиза и при нагревании. При 50°С МnО3 разлагается:

2МnО3 > 2МnО2 + О2

и гидролизуется при растворении в воде:

3МnО3 + Н2О > МnО2 + 2НМnО4

Производные Мn(VII) -- это оксид марганца (VII) Мn2О7 и его гидратная форма - кислота НМnО4, известная только в растворе. Мn2О7 устойчив до 10°С, разлагается со взрывом:

д) В виде простого вещества Fе — серебристо-белый металл. В соответствии с усилением вклада ковалентной связи (за счет 3d-, 4d- и 6d-электронов соответственно) в ряду Fе—Ru—Оs теплота сублимации, температуры плавления и кипения заметно возрастают. Железо — серебристый пластичный металл. Оно хорошо под­дается ковке, прокатке и другим видам механической обработки, Механические свойства железа сильно зависят от его чистоты — от содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способ­ностью растворять в себе многие элементы. В частности, растворяется в  железе и углерод. Его растворимость сильно зависит от кристаллической модификации железа и от температуры.  В  α- железе углерод раствор очень незначительно, в γ- железе гораздо лучше. Раствор в γ- железе тер­модинамически устойчив в более ши­роком интервале температур, чем чистое γ- железо. Твердый раствор углерода в α- железе называется ферри­том, твердый раствор углерода в γжелезе —аустенитом. Железо- металл средней химической активности. В отсутствие влаги в обычных условиях пассивируется, но во влажном воздухе легко окисляется и покрывается ржавчиной. При нагревании (в особенности в мелкораздробленном состоянии) взаимодействует почти со всеми неметаллами. При этом в зависимости от условий и активности неметалла образуются твердые растворы( с  C, Si, N, B, P, H), металлоподобные ( Fe3C, Fe3Si, Fe4N, Fe2N) или солеподобные ( FeF3, FeCI3, FeS) соединения. Окисление железа кислородом приводит к образованию оксидов нестехиометрического состава. Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вслед­ствие своей рыхлости не защищает железо от дальнейшего окис­ления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(ІІI):

                                                     2Fe+3/2O2+nH2O=Fe2O3• nH2O

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fез04

 (FеО • Fe2Оз):

ЗFе + 202 + 2Н2О = Fез04 • nН2О Железо растворяется в соляной кислоте любой концентрации:

Fе + 2НС1 = FеС12 + Н2 ↑     

Аналогично происходит растворение в разбавленной серной кислоте:

                                                              Fe+H2SO4=FeS04+H2 ↑

В концентрированных растворах серной кислоты железо окис­ляется до железа(III):

2Fе + 6Н2S04 = Fе2(SO4)3 + 3SO2   ↑  + 6Н2О

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практи­чески не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fе + 4НNОз = Fе(NOз)з + N0 ↑  + 2Н20

При высоких концентрациях НNОз растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения же­леза (II) и соединения железа (III). Первые отвечают оксиду же­леза(II), или закиси железа, FеО, вторые—оксиду железа (III), или окиси железа, Fе2О3. Кроме того, известны соли железной кис­лоты Н2Fе04, в которой степень окисленности железа равна +6. Соединения железа(II). Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них—сульфат железа(\\), или железный купорос,FeSO4•7H2O , образующий светло-зеленые кристаллы, хорошо рас­творимые в воде. На воздухе железный купорос постепенно вы­ветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа (III). Сульфат железа (II) получают путем растворения обрезков стали в 20—30% -пой серной кислоте:

Fе + Н2S04 = FеS04 + Н2 ↑

Сульфат железа (II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при кра­шении тканей. При нагревании железного купороса выделяется вода и полу­чается белая масса безводной соли Ре804. -При температурах выше 480 °С безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяже­лые белые пары серной кислоты:

2FеS04 == Fе2О3 + S02 ↑  + S0з↑

При взаимодействии раствора соли железа (II) со щелочью вы­падает белый осадок гидроксида железа(II) Fе(ОН)2, который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа(III) Fе(ОН)з:       

4Fе(ОН)2 + О2 + 2Н2О = 4Fе(ОН)3

Безводный оксид железа(\\) FеО можно получить в виде чер­ного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода (II) при500°С:

Fе2О3 + СО == 2FеО + C02

Карбонаты щелочных металлов осаждают из растворов солей железа (II) белый карбонат железа(\\)FеСОз. При действии воды, содержащей СО2, карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fе(НСОз)2. В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа(III) действием различных окислителей—азотной кислоты, перманганата калия, хлора, например:

                        

                          6FeSO4+2HNO3+3H2SO4=3Fe2(SO4)3+2NO ↑ +4H2O

                    10FeSO4+2KMnO4+8H2SO4=5Fe2(SO4)3 +K2SO4+2MnSO4+8H2O

Ввиду способности легко окисляться, соли железа (II) часто применяются как восстановители.

Соединения железа (III). Хлорид железа(III) FеСIз представляет собой темно-коричневые с зеленоватым отливом кри­сталлы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие раз­личное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В раз­бавленном растворе FеСIз  гидролизуется до основных солей. В па­рах хлорид железа(III) имеет структуру, аналогичную структуре хлорида алюминия и отвечающую формуле Fе2СI6; за­метная диссоциация Fе2СI6 намолекулы FеСIз начинается при тем­пературах около 500 °С.   Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических ве­ществ, в текстильной промышленности. Сульфат железa(III) Fе2(S04)3 — очень гигроскопичные, рас­плывающиеся на воздухе белые кристаллы. Образует кристалло­гидрат Fе2(S04)3 . 9Н20 (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелоч­ных металлов и аммония он образует двойные соли — квасцы, на­пример, железоаммонийные квасцы (NН4)Fе(SO4)2 •12Н2О—хо­рошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500 °С сульфат железа (III) разлагается в со­ответствии с уравнением:

Fе2(S04)3 == Fе2О3 + ЗSО3 ↑

Сульфат железа (III) применяют, как и FеСI3, в качестве коагулянта при очистке воды, а также для травления металлов. Рас­твор Fе2(S04) способен растворять Сu2S и СuS с образованием сульфата меди(II); это используется при гидрометаллургическом получении меди. При действии щелочей на растворы солей железа (III) выпа­дает красно-бурый гидроксид железа(III)Fе(ОН)з, нераствори­мый в избытке щелочи. Гидроксид железа(III)—более слабое основание, чем гидро­ксид железа (II); это выражается в том, что соли железа(III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fе(ОН)з солей не образует. Гидроли­зом объясняется и цвет растворов солей железа (III): несмотря на то, что ион Fе3+ почти бесцветен, содержащие его растворы окра­шены в желто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fе(ОН)з, которые образуются благодаря гидролизу:

                      Fe3++H2O ↔ FeOH2+ + H+

                     FeOH2+ + H2O ↔ Fe(OH)+2 + H+

                    Fe(OH)2+ + H2O ↔ Fe(OH)3 + H+

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. При прокаливании гидроксид железа(III), теряя воду, пере­ходит в оксид железа(III), или окись железа, Fе2О3. Оксид же­леза (III) встречается в природе в виде красного железняка и при­меняется как коричневая краска — железный сурик, или мумия. Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия КSСN или роданида аммония NН4SСN на соли железа. Раствор роданида калия содер­жит бесцветные ионы SСN-, которые соединяются с ионами Fе(III), образуя кроваво-красный, слабо диссоциированный рода­нид железа(III) Fе(SСN)3. При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным. Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например циа­нида калия, получается белый осадок цианида железа (II);

Fе2+ + 2СN- == Fе(СN)2↓

е) С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold — домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт». Кобальт — относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором). Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей — это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями — хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3. Кобальт — твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг/дм3. При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт — ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со0/Со2+ –0,29 B. Если нитрат кобальта Со(NO3)2, его гидроксид Со(ОН)2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со3О4 (CoO·Co2O3). Этот оксид по химическому поведению похож на Fe3О4. Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:

Со3О4 + 4H2 = 3Со + 4H2O.

Применение  Основная доля получаемого кобальта расходуется на приготовление различных сплавов. Так, добавление кобальта позволяет повысить жаропрочность стали, обеспечивает улучшение ее механических и иных свойств. Кобальт — компонент некоторых твердых сплавов, из которых изготовляют быстрорежущий инструмент (сверла, разцы и другие). Особенно важны магнитные кобальтовые сплавы (в том числе так называемые магнитомягкие и магнитотвердые). Магнитные сплавы на основе кобальта используют при изготовлении сердечников электромоторов, их применяют в трансформаторах и в других электротехнических устройствах. Для изготовления головок магнитной записи применяют кобальтовые магнитомягкие сплавы. Кобальтовые магнитотвердые сплавы типа SmCo5, PrCo5 и др., характеризующиеся большой магнитной энергией, используют в современном приборостроении.  Для изготовления постоянных магнитов находят применение сплавы, содержащие 52% кобальта и 5-14% ванадия или хрома (так называемые викаллои).  Кобальт и некоторые его соединения служат катализаторами.  Соединения кобальта, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий. Соединения кобальта используют как пигменты многих красителей.