Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Thesis - Beaver simulation

.pdf
Скачиваний:
38
Добавлен:
19.02.2016
Размер:
5.22 Mб
Скачать

Contents

xv

 

F.2.6 Helpprograms to create and load datafiles .......................

228

 

F.2.7 Helpfunctions to compute initial conditions and to linearize the aircraft

 

model .......................................................

236

 

F.3 Models of wind and atmospheric turbulence ...........................

249

 

F.3.1 Introduction ..............................................

249

 

F.3.2 List of variables. used for the wind and turbulence models ...........

249

 

F.3.3Description of the wind and turbulence models and their helpfiles

..... 251

 

F.4 ILS approach and VOR navigation models ............................

254

 

F.4.1 Introduction ..............................................

254

 

F.4.2 List of variables. used for the ILS and VOR models ................

254

 

F.4.3 Description of the ILS and VOR blocks and helpfiles ................

257

 

F.5 Conclusions ...................................................

263

Appendix G.Standard SIMULINKblocks ..........................

271

 

G.1 Introduction ...................................................

271

 

G.2 Blocks from the Sources library ....................................

271

 

G.3 Blocks from the Sinks library ......................................

272

 

G.4 Blocks from the Discrete library ...................................

. 272

 

G.5 Blocks from the Linear library .....................................

273

 

G.6 Blocks from the Nonlinear library ..................................

273

 

G.7 Blocks from the Connections library .................................

274

 

G.8 The Gmup and Mask functions ....................................

. 275

 

G.9 Conclusions ..................................................

. 275

Appendix H.Installation procedures ............................

277

List of tables.

 

 

Different steps in the aircraft model identification. performance analysis. and AACS

 

design and evaluation. which can be done with SIMULINK.................

23

 

General aircraft data of the DHC-2 'Beaver'. PH-VTH ....................

29

 

Aircraft data on which the aerodynamic model is based ...................

31

 

Coefficients in the nonlinear aerodynamic model of the DHC-2 Beaver' aircraft. valid

 

within the 35-55 4 s TAS-range ..................................

32/33

 

Coefficients in the nonlinear engine model of the DHC-2 'Beaver' aircraft. valid within

 

the 35-55 m/s TAS-range ..........................................

35

 

Initial conditions for V = 45 m/s. H = 6000 ft. obtained with the

trim routine

 

ACTRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 74

 

State-space matrices of linear 'Beaver' model. derived from the nonlinear SIMULN

 

model with ACLIN ................................................

76

 

Basic open-loop properties of the linear Beaver' model. derived from the nonlinear

 

SIMULINK model with ACLIN ........................................

77

 

Steps to be taken to simulate the system from figure 6-1 .................

102

 

Steps to be taken to simulate the system from figure 6-2 .................

104

A-1

Moments and products of inertia ...................................

124

A-2

Definition of inertia parameters .................................

127/128

C-1

Maximum permissible localizer steady-state errors .....................

158

C-2

Maximum permissible glideslope steady-state errors ....................

158

VOR coverage as a function of altitude above the ground. based on two different flight

tests ........................................................

163

Fehlberg coefficients ............................................

175

Coefficients for Adams-Bashforthmethods ............................

178

Coefficients for Adams-Moultonmethod ..............................

179

Coefficients for stiffly stable method (GEAR) ..........................

182

Magnitude of the signals for two calculating sequences (example) ..........

187

Parameters of the aerodynamicmodel of the 'Beaver' in the format used by the SIW-

LINK simulation model ...........................................

264

Parameters of the engine model of the 'Beaver' in the format used by the SIMULINK

simulation model ...............................................

265

Aircraft geometry and mass distribution data in the format used by the SIMULINK

simulation model ...............................................

265

List of basic blocks within the 'Beaver' model. including their inputs and outputs266

List of all outputs from the system BEAVER which are sent to the 'MAT-

work-

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

267/268

List of figures.

The body-axes reference frame FBand the positive directions of the body-axes forces

Fz.Fy.Fz.moments L)M.N. velocities u. v. w. and rotational velocities

 

p.q. a n d r ......................................................

9

Relationship between the vehicle-carried vertical reference fkame Fv and the earth-

fixed reference frame FE ..........................................

10

Relationshipbetween the vehicle-carriedvertical referenceframe Fvand the body-fixed

reference frame FB...............................................

12

Relationship between the flight path reference frame Fw and the body-fixed reference

frameFB ......................................................

13

Relationships between body-fixed reference frame FB.flight path reference frame Fw.

and stability reference frame Fs ....................................

14

Sign conventions for control surface deflections .........................

14

The De Havilland DHC-2 'Beaver' laboratory aircraft ....................

29

Basic dimensions of the DHC-2 'Beaver' ...............................

30

Functional relations between MATLAB and SIM~L~NK.....................

50

Modular structure of the DUT-flightsimulatorsoftware (sequence of computations~

Structure of the main level of the 'Beaver' model in SIMULINK..............

61

Structure of the block 'AinlataGroup' ................................

63

Structure of the block 'Aerodynamics Group' ...........................

64

Structure of the block 'EngineGroup' ................................

64

Structure of the block 'Aircraft equations of motion' ......................

65

Structure of the block 'State derivatives' ..............................

65

Model structure for simulation of an aircraft. equipped with an automatic controller.

and affected by external disturbances ................................

67

Force and moment coefficients of the nonlinear Beaver model as functions of

 

a a n d p ......................................................

71

Open-loop responses of the 'Beaver' to a block-shaped elevator input A6. = 3" during 2

seconds ....................................................

7@79

Open-loop repsonses of the 'Beaver' to a block-shaped aileron input A6. = 3" during 2

seconds ....................................................

80/81

Open-loop responses of the 'Beaver' to a block-shaped rudder input A6. = 3" during 2

seconds .....................................................

82/83

Open-loop responses of the 'Beaver' to a flap deflection Aat = 3 O in 3 seconds

. 84/85

Open-loop responses of the 'Beaver' to a change in engine speed An = 200 RPM in 4

seconds .....................................................

86/87

Open-loopresponses of the 'Beaver' to a change in manifold pressure Apz = 2 inch Hg

in2seconds ..................................................

ssJs9

Open-loop responses to longitudinal turbulence .......................

90191

Contents

xvi i

Open-loop responses to lateral turbulence ...........................

92/93

Open-loop responses to vertical turbulence ..........................

9gr95

Open-loop responses to longitudinal + lateral + vertical turbulence ........

m 7

Control-input Bode plots for longitudinal linearized 'Beaver' model ..........

98

Block-diagramof the system OLOOPl (nonlinear open-loopsimulation model for exter-

nalinputs) ....................................................

 

107

Block-diagram of the system OLOOPl-L (linear open-loop simulation model for exter-

nalinputs) ....................................................

 

107

Block-diagram of the system OLOOP2 (nonlinear open-loop simulation model for

atmospheric disturbances) ........................................

108

Relationship between aerodynamic forces in flight-path and body axes reference

frames .......................................................

 

130

Wind profile for A = -0.0065 Wm and Vw9.16 = 14 s .....................

142

Wind velocity components along the aircraft's body axes .................

143

Von-handDrydenspectra ...................................

145

Modelling atmospheric turbulence as filtered white noise ................

146

Positions of the ILS system components ..............................

151

Tsyout of the approach path ......................................

152

Required coverage of localizer signals ...............................

152

Hyperbolic intensection of localizer and glideslope reference planes .........

153

Required coverage of glideslope signals compared with required coverage of localizer

signals .......................................................

 

 

ILS performance categories .......................................

 

Definition of earth-fixed and runway axes, used for approach simulation .....

 

h l i z e r geometry and definition of &, YE, XF, YF ....................

 

Glideslope geometry .............................................

 

 

Maximum allowable ILS localizer and glideslope noise ..................

 

Geometry of VOR navigation ......................................

 

The 'cone of silence' ............................................

.

 

Family of solutions of instable ODE .................................

 

Family of solutions of stable ODE ..................................

 

Discretization error, roundoff error, and total error as a function of h,, .......

Euler's method for stiff ODE ......................................

 

Digital control simulation scheme ..................................

 

Block-diagram equivalent of transfer function .........................

 

Model, consisting of three gains ....................................

 

Gain with unity feedback: an algebraic loop ...........................

 

Dynamics, introduced by an algebraic loop ............................

 

Iterative solution of an algebraic loop ...............................

 

Trimalgorithm ................................................

 

 

Program-structure diagram of ACTRIM.M (main program of aircraft tY.im routines)l96

Program-structure diagram of ACCONSTRM (subroutine with flightpath constraints and

kinematic relations) .............................................

 

197

Program-structure diagram of ACC0ST.M (subroutine with cost function for aircraft

trim) . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197

Main level of the systc

BEAVER ..................................

207

hternal structure of t subsystem block Beaver dynamics and output equations208

hternal structure of t

subsystem block Airdata Gmup .................

211

Internal structure of t

'basic' block Atmosph .........................

211

hternal structure of t

'basic' block Airdatal ........................

212

hternal structure of t

'basic' block Airdata2 ........................

212

hternal structure of t

'basic' block Airdata3 ........................

212

[nternalstructure of t

subsystem block Aerodynamics Gmup ............

214

hternal structure of t

'basic' block Dimless .........................

214

[nternalstructure of t

'basic' block Aemmod (Beaver) ..................

214

[nternalstructure of t

'basic' block FMdims .........................

215

Internal structure of t ne subsystem block Engine Group .................

215

Internal structure o f t ne 'basic' block Power (Beaver) ................... .

216

Internal structure of t le 'basic' block Engmod (Beaver) ..................

215

Internal structure o f t ne 'basic' block Gravity ..........................

219

Internal structure of t ne 'basic' block Fwind ..........................

219

Internal structure of t ne 'basic' block FMsort ..........................

219

Internal structure of t ne subsystem block Equations of motion ............

221

Internal structure of t ne subsystem block State derivatives ...............

221

Internal structure o f t ne 'basic'block Hlpfcn ..........................

222

Internal structure of t ne 'basic' block Vabdot ..........................

223

Internal structure o f t ne 'basic' block pqrdot ..........................

223

Internal structure of t ~e 'basic' block Eulerdot .........................

223

Internal structure of t ne 'basic'block uvw ............................

224

Internal structure of t ne 'basic' block xyHdot ..........................

224

Internal structure of t ne 'basic' block xobtcorr .........................

224

Internal structure of t ne 'basic' block fZpath ...........................

227

Internal structure of t ne 'basic' block accel ............................

227

Internal structure of t ne 'basic' block uvwdot ..........................

229

Internal structure of t ne block BLWIND .............................

250

Internal structure of t ne block C W N D ..............................

250

Internal structure of t ne block UDRYDl .............................

250

Internal structure o f t ne block VDRYDl .............................

250

Internal structure of t ~e block UDRYDZ .............................

252

Internal structure of t ne block VDRYDZ .............................

252

Internal structure o f t ne block ILS .................................

257

Internal structure of t ~e block ILSTEST .............................

257

Internal structure of t ne block LOCERR .............................

259

Internal structure of t ~e block GSERR ..............................

259

Internal structure of t ne block LOCNOISEI ..........................

259

Internal structure of t ne block GSNOISEl ...........................

259

Internal structure of t ne block LOCNOISE2 ..........................

260

Internal structure of t ne block GSNOISEZ ...........................

260

Internal structure of t ne block ILSXMPL .............................

260

Internal structure of t ne block VOR .................................

262

Internal structure of t ne block VORERR .............................

262

Symbols and definitions.

1

Symbols and definitions (part I).

Due to the very large number of variables which will be used in this report, it is sometimes necessary to use the same symbols for different variables. Often, the meaning of the symbol follows directly from the context of its use. Some symbols will be overlined to prevent confusion with other quantities, using the same symbol. Vectors will be typeset in boldface and matrices and reference frames (reference axes) are denoted with CAPITALS. Software names are typeset in SMALL CAPITALS and commands from software packages in CAPITALS + ITALICS. Italics will also be used for examples, equations, and symbols. A list of variables is included in appendix F.

0.1 Symbols.

engine model parameter, [-I

 

 

speed of sound, [m s"]

 

 

kinematic acceleration along X,-axis,

[g]

 

kinematic acceleration along Y,-axis,

[g]

 

kinematic acceleration along 2,-axis,

[g]

 

output of accelerometer (specific force) in c.g. along X,-axis,

[g]

output of accelerometer (specific force) in c.g. along Y,-axis,

[g]

output of accelerometer (specific force) in c.g. along 2,-axis,

[g]

wingspan, [m]

 

 

engine model parameter, [-I

 

 

mean aerodynamic chord, [m]

 

 

course datum, [rad]

 

 

dimensionless moment about X,-axis

(rolling moment), [-I

 

dimensionless moment about Y,-axis

(pitching moment), [-I

 

dimensionless moment about 2,-axis

(yawing moment), [-I

 

dimensionless force along XB-axis,[-I

 

 

dimensionless force along YB-axis,[-I

 

 

dimensionless force along 2,-axis, [-I

 

 

total aerodynamic drag, [N]

 

 

distance from aircraft 1 glideslope

reference plane (see appen-

dix C), [m].

 

 

distance from aircraft 1 localizer reference plane (see appendix C), [m]

function evaluation a t time step i body-fixed reference frame earth-fixed reference frame runway ('field') reference frame measurement reference frame

special body-fixed reference frame for the 'Beaver' stability reference frame

vehicle-carried vertical reference frame flight path reference frame

flight path acceleration, [g] acceleration of gravity, [m s ' ~ ]

[N m]

pressure altitude, [m]

step size for numerical integration, [s] geopotential altitude, [m]

altitude of aircraft above the runway, [m] altitude of runway above sea level, [m] counter or iteration number, [-I

current through glideslope indicator, bA] current through localizer indicator, [CLA]

inertia parameter (i = 1,2, ...,6, see table A-2), [kg m2] moment of inertia along XB-axis,[kg m2]

moment of inertia along Y,-axis, [kg m2] moment of inertia along ZB-axis,[kg m2] product of inertia in XB-YBplane, [kg m2] product of inertia in XB-ZBplane, [kg m2] product of inertia in YB-ZBplane, [kg m2] timestep (for discrete systems, t = kat,), [-]

function evaluations between two output points for Runge-Kutta integrators

total aerodynamic rolling moment, total aerodynamic lift, [N]

general scale length for turbulence, [m] scale length for glideslope noise, [m] scale length for localizer noise, [m]

scale length for turbulence velocity along X,-axis, [m] scale length for turbulence velocity along YB-axis,[m] scale length for turbulence velocity along &axis, [m] mass of aircraft, [kg]

Mach number, [-I

molecular weight of air, [kg kmol-'1

total aerodynamic pitching moment, [N m] engine speed, [RPM]

stepnumber in numerical integration, [-I total aerodynamic yawing moment, [N m] angular rate of roll, [rad s"]

order of numerical integration method, [-I engine power, [N m s"]

Iinertia parameters for p-equation (see appendix A, table A-2)

ambient or free-stream pressure, [N m'2] manifold pressure, ["Hg]

angular rate of pitch, [rad s"] impact pressure, [N mm2] dynamic pressure, [N m'2]

iinertia parameters for q-equation (see appendix A, table A-2)

Symbols and definitions.

3

r

angular rate of yaw, [rad s-'1

 

 

R

RaIM,, specific gas constant of air, [ J K" kg-']

 

Ra

universal gas constant, [J K-' kmol-'1

 

 

Rc

Reynolds number with respect to c ,[-]

 

 

R o ~ e

distance from aircraft to DME transmitter, [m]

 

Re

Reynolds number per unit length, [m-'1

 

 

Rg8

ground distance from aircraft to glideslope transmitter, [m]

ground distance from aircraft to localizer transmitter, [m]

R,

R m

ground distance from aircraft to VOR transmitter, [m]

Rl, Rm 9

7

 

 

Rpq9 Rpr

inertia parameters for r-equation (see appendix A , table A -2)

R99 ,R, ,

 

 

 

S

wing area, [m2]

 

 

sg8

sensitivity of glideslope indicator, [cLA/rad]

 

sensitivity of localizer indicator, [CcA/rad]

 

S Z ~

 

t

time, [s]

 

 

t8

sampling time (stepwith for discrete systems), [s]

 

T

ambient or freeatream temperature, [K]

 

Tt

total temperature, [K]

 

 

T,

time until a signal has damped out to an amplitude of 0.5 times

 

the initial value

 

 

 

velocity along XB-axis,[m s"]

 

 

 

wind velocity component along XB-axis,[m s"]

 

 

wind velocity component along XE-axis, [m s"]

 

 

velocity along YB-axis,[m s"]

 

 

 

wind velocity component along Y,-axis,

[m s"]

 

 

wind velocity component along YE-axis, [m s"]

 

 

true airspeed, [m s"]

 

 

 

calibrated airspeed, [m s"]

 

 

 

equivalent airspeed, [m s"]

 

 

 

wind velocity, [m s-'1

 

 

vw9.,6

wind velocity a t a n altitude of 9.15 m (reference velocity), [m s-'1

w

velocity along ZB-axis,[m s-'1

 

 

W

aircraft weight, [N]

 

 

w,,w,, w, three independent white noise signals

 

 

W w

wind velocity component along 2,-axis,

[m s"]

 

Wwe

wind velocity component along &-axis,

[m s-'1

 

Xa

aerodynamic force along XB-axis,[N]

 

 

xf

X-coordinate of aircraft relatively to FF(see appendix C), [m]

gravity force along XB-axis,[N]

 

 

Xi

 

 

X-coordinate of glideslope antenna relatively to F,

(see appen-

xg8

dix C), [m]

 

 

 

 

 

Xzm

X-coordinate of localizer antenna relatively to F,

(see appen-

xt

dix C), [m]

 

 

force along X,-axis due to operation of powerplant, [N]

XYOR

X-position of VOR antenna relatively to FE,[m]

 

Y

total aerodynamic sideforce, [N]

 

 

a'

aerodynamic force along YB-axis,[N]

 

 

y ~ r

gravity force along YB-axis,[N]

 

 

 

 

 

- 6a,efl
1, hadl

Y-coordinate of glideslope antenna relatively to FF (see appendix C), [m]

force along Y,-axis due to operation of powerplant, [N] Y-position of VOR antenna relatively to F, , [m] aerodynamic force along 2,-axis, [N]

gravity force along 2,-axis, [N]

force along 2,-axis due to operation of powerplant, [N]

angle of attack, [rad]

coefficient in Runge Kutta and Adams equations angle of sideslip, [rad]

coefficient in Adams equations coefficient in Runge Kutta equations flight path angle, [rad]

ratio of specific heats of air, [-I

reference flight path angle a t glideslope, [rad]

angle between localizer reference plane and line from ground position of aircraft to glideslope antenna (see appendix C), [rad] angle between localizer reference plane and line from ground position of aircraft to localizer antenna (see appendix C), [rad] angle between CD, and VOR bearing where aircraft flies, [rad] coefficient in Runge Kutta equation

coefficient in Runge Kutta equation

angle of deflection of ailerons (6, = angle of deflection of elevator, [rad] angle of deflection of flaps, [rad]

local discretization erro; a t integration step n angle of deflection of rudder, [rad] increment, [-I

increase of total pressure over the propeller, [N mm2]

angle between $ideslope reference plane, and line through aircraft and glideslope antenna (see appendix C), [rad]

pitch angle, [rad]

-aT (temperature gradient), [K m"]

a h

eigenvalue

aerodynamic angle of roll, [rad] dynamic viscosity, [kg m" s-'1 air density, [kg m-3]

standard deviation

standard deviation of glideslope noise, w ] standard deviation of localizer noise, [CLA]

standard deviation of turbulence velocity in X,-direction, [m/s] standard deviation of turbulence velocity in Y,-direction, [m/s] standard deviation of turbulence velocity in 2,-direction, [m/s] time interval

roll angle, [rad] bank angle, [rad] azimuth angle, [rad] yaw angle, [rad]

runway heading, [rad]

wind direction (north = n: rad), [rad]

Symbols and definitions.

5

o

angular frequency, [rad/s]

%natural frequency of damped system, [radls]

00

natural frequency of undamped system, [rad/s]

GI

spatial frequency, [radlm]

0.2 Vectors and vector functions.

 

body axis acceleration vector

 

vector with dimensionless force and moment coefficients from

 

aerodynamic model

 

vector with dimensionless force and moment coefficients from

 

engine model

 

state equation

 

resulting force vector acting on rigid body (I? = [ Fx Fy F, lT)

 

output equation

 

resulting moment vector about c.g. of rigid body (G = [ L M N IT)

 

resulting angular momentum of a rigid body about the centre of

 

gravity (h = [ hx hy h, lT)

 

position vector

 

input vector (continuous signal)

 

input vector (discrete signal)

 

true airspeed vector

 

wind velocity vector

 

state vector (continuous states)

 

state vector (discrete states)

 

output vector (continuous signal)

 

output vector (discrete signal)

 

rotational velocity vector

0,3 Matrices,

A

system matrix of linear state-space system

B

input matrix of linear state-space system

Tab

transformation matrix (from reference frame F, to F,)

0

transformation matrix for first Euler rotation (section 0.8.2)

@transformation matrix for second Euler rotation (section 0.8.2)

Y

transformation matrix for third Euler rotation (section 0.8.2)

0.4 Functions,

f(t)

fi

g(t>

ma)

ki

S(u), S(Q)

state equation

function evaluation a t time step i

output equation

frequency response of forming filter

function evaluations between two output points for Runge-Kutta integrators

power spectral density functions

0.5 Indices.

0

nominal value

 

0

value a t sea level

 

a

aerodynamic forces and moments (-coefficients)

a

aileron

 

a

velocity components relative to surrounding atmosphere

BYm

asymmetrical dynamics (lateral)

c.g.

in the centre of gravity

 

DME

DME

 

e

elevator

 

e

velocity components relative to earth axes

f

flaps

 

gr

gravity forces

 

gs

glideslope

 

k

'kinematic' (used for accelerations)

loc

localizer

 

n

number of step in the numerical integration, [-I

 

 

a (.I

P

derivative with respect to dimensionless rolling speed, -

 

 

a (G)

Q

 

a (.I

derivative with respect to dimensionless pitching speed, -

 

 

a (G)

r

 

a (.I

derivative with respect to dimensionless yawing speed, -

r

rudder

a (4

 

ref

reference value of a signal (used for inputs to control loops)

RW

runway

 

symm

symmetrical dynamics (longitudinal/vertical)

t

forces and moments (-coefficients)due to operation of powerplant

VOR

VOR

 

w

wind velocity (-components along body axes)

W

forces due to non-steady atmosphere

we

wind velocity components along earth axes

a

derivative with respect to angle of attack, do

 

 

a a

a2

2

a o

derivative with respect to a

, -

 

 

d a*

a3

3

a 0

derivative with respect to a , -

aa3

a sf

a&:

a24t

B

derivative with respect to a-af , -a (.I

a (a.6,)

derivative with respect to a*dpt2,

derivative with respect to a2*dpt, -a (.)

a(a2.&t)

derivative with respect to angle of sideslip, do a P

p2

derivative with respect to p2, do

 

aP2

B3

3

a o

derivative with respect to fi

, -

 

 

a P3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]