Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
отчет по 4 практике.docx
Скачиваний:
87
Добавлен:
17.02.2016
Размер:
634.04 Кб
Скачать

8 Эксплуатация скважин, эксплуатируемых штанговыми глубинными насосами

Штанговая насосная установки ШНУ (рис. 2) состоит из наземного и подземного оборудования. Подземное оборудование включает: штанговый скважинный насос (ШСН) со всасывающем клапаном 1 (неподвижный) на нижнем конце цилиндра и нагнетательным клапаном 2 (подвижный) на верхнем конце поршня-плунжера, насосные штанги 3 и трубы.

Рис.2 Штанговая насосная установка

Станок-качалка сообщает штангам возвратно-поступательное движение, близкое к синусоидальному. СК имеет гибкую канатную подвеску для сочленения с верхним концом полированного штока и откидную или поворотную головку балансира для беспрепятственного прохода спуско-подъемных механизмов (талевого блока, крюка, элеватора) при подземном ремонте.

Балансир качается на поперечной оси, укрепленной в подшипниках, и сочленяется с двумя массивными кривошипами 7 с помощью двух шатунов 8, расположенных по обе стороны редуктора. Кривошипы с подвижными противовесами могут перемещаться относительно оси вращения главного вала редуктора на то или иное расстояние вдоль кривошипов. Противовесы необходимы для уравновешивания СК.

Редуктор с постоянным передаточным числом, маслозаполненный, герметичный имеет трансмиссионный вал, на одном конце которого предусмотрен трансмиссионный шкив, соединенный клиноременной передачей с малым шкивом электродвигателя 9. На другом конце трансмиссионного вала имеется тормозной барабан. Опорный подшипник балансира укреплен на металлической стойке-пирамиде.

Все элементы станка-качалки - пирамида, редуктор, электродвигатель - крепятся к единой раме, которая закрепляется на бетонном фундаменте. Кроме того, все СК снабжены тормозным устройством, необходимым для удержания балансира и кривошипов в любом заданном положении. Точка сочленения шатуна с кривошипом может менять свое расстояние относительно центра вращения перестановкой пальца кривошипа в то или иное отверстие, которых для этого предусмотрено несколько. Этим достигается ступенчатое изменение амплитуды качаний балансира, т. е. длины хода штанг.

9 Эксплуатация скважин, эксплуатируемых установками погружных бесштанговых насосов

Для отбора из скважин больших объёмов жидкости применяется лопастный насос с рабочими колесами центробежного типа, обеспечивающий высокий напор при заданных подачах жидкости и габаритах насоса. Наряду с этим, в нефтяных скважинах некоторых районов с вязкой нефтью необходима большая мощность привода относительно подачи. В общем случае эти установки носят название погружные электронасосы. В первом случае — это установки центробежных электронасосов, во втором — установки погружных винтовых электронасосов.

Скважинные центробежные и винтовые насосы приводятся в действие погружными электродвигателями. Электроэнергия подводится к двигателю по специальному кабелю. Установки ЭЦН и ЭВН довольно просты в обслуживании, так как на поверхности имеются станция управления и трансформатор, не требующие постоянного ухода. При больших подачах УЭЦН имеют достаточный КПД, позволяющий конкурировать этим установкам со штанговыми установками и газлифтом. При этом способе эксплуатации борьба с отложениями парафина проводится достаточно эффективно с помощью автоматизированных проволочных скребков, а также путем нанесения покрытия на внутреннюю поверхность НКТ.

Межремонтный период работы УЭЦН в скважинах достаточно высок и достигает 600 суток. Скважинный насос имеет 80—400 ступеней. Жидкость поступает через сетку в нижней части насоса. Погружной электродвигатель маслозаполненный, герметизированный. Во избежание попадания в него пластовой жидкости устанавливается узел гидрозащиты. Электроэнергия с поверхности подается по круглому кабелю, а около насоса — по плоскому.

Трансформатор (автотрансформатор) используют для повышения напряжения тока от 380 (напряжение промысловой сети) до 400— 2000 В. Станция управления имеет приборы, показывающие силу тока и напряжение, что позволяет отключать установку вручную или автоматически.

Колонна НКТ оборудуется обратным и сливным клапанами. Обратный клапан удерживает жидкость в НКТ при остановках насоса, что облегчает запуск установки, а сливной освобождает НКТ от жидкости перед подъемом агрегата при установленном обратном клапане. Для повышения эффективности работы для извлечения вязких жидкостей используется скважинные винтовые насосы с погружным электродвигателем. Установка скважинного винтового насоса, подобно установке ЭЦН, имеет погружной электродвигатель с компенсатором и гидрозащитой, винтовой насос, кабель, обратный и сливной клапаны (встроенные в НКТ), оборудование устья, трансформатор и станцию управления. За исключением насоса, другие части установки идентичны.

Рис.3 Установка УЭЦН

ЗАКЛЮЧЕНИЕ

Во время прохождения практики я ознакомился с практической работой оператора по добыче нефти и газа, с процессами, оборудованием и принципами его функционирования для бурения нефтяных и газовых месторождений, добычи нефти и газа и обустройством нефтяного месторождения. Его роль в организации очень велика, а работа весьма опасна. Каждый аспект работы требует большого количества времени, труда, проверок и контроля оборудования прежде, чем какой-то метод работы зарекомендует себя как эффективный. Для наибольшей эффективности оператор по добыче нефти и газа планирует свою работу.

Практика послужила для меня начальным пунктом для дальнейшего развития в этой сфере работы, как будущей моей профессией.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Амиров А.Д. Капитальный ремонт нефтяных и газовых скважин, 1953 г. с. 313 – 320 .

  2. Газизов А.А., А.Ш.Газизов (ОАО «НИИ Нефтепромхим»), с. 174 А.И.Никифоров (Институт механики и машиностроения КНЦ РАН) Об одном критерии эффективности разработки нефтяной залежи. с. 257 – 261.

  3. Грайфер В.И., В.Д.Лысенко (АО «РИТЭК») О повышении эффективности разработки месторождений при применения химических реагентов. с. 175.

  4. Желтов Ю.П. Разработка нефтяных месторождений: Учебное пособие для вузов. М.,1999. с. 94.

  5. Закиров С.Н. Теория и проектирование разработки газовых и газоконденсатных месторождений: Учебное пособие для вузов. М.: Недра, 1989. с. 249 – 256.

  6. Муравьев И.М. Разработка и эксплуатация нефтяных и газовых месторождений. с. 175.

  7. Проектирование разработки нефтяных месторождений (принципы и методы) / А.П. Крылов и др. М.: Гостоптехиздат, 1962. с. 63 – 74.

  8. Технология добычи нефти и газа / И.М. Муравьев и др. М.: Недра, 1971. с. 45.

  9. Раабен А.А., Шевалдин Л.Е., Максутов Н.Х. Ремонт и монтаж нефтепромыслового оборудования. М., Недра, 1989.

  10. Сарваретдинов Р.Г. , Гильманова Р.Х., Хисамов Р.С. (НПО «Нефтегазтехнология», ОАО «Татнефть») Формирование базы данных для разработки геолого-технических мероприятий оптимизации добычи нефти. с. 249 – 252.