Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CFDModuleUsersGuide.pdf
Скачиваний:
68
Добавлен:
07.02.2016
Размер:
2.65 Mб
Скачать

CFD Module

User´s Guide

VERSION 4.2a

Benelux

COMSOL BV

Röntgenlaan 37

2719 DX Zoetermeer

The Netherlands

+31 (0)

79 363 4230

+31 (0)

79 361 4212

info@comsol.nl

www.comsol.nl

Denmark

COMSOL A/S

Diplomvej 381

2800 Kgs. Lyngby

+45 88 70 82 00 +45 88 70 82 88 info@comsol.dk

www.comsol.dk

Finland

COMSOL OY

Arabiankatu 12 FIN-00560 Helsinki +358 9 2510 400

+358 9 2510 4010 info@comsol.fi

www.comsol.fi

France

COMSOL France

WTC, 5 pl. Robert Schuman F-38000 Grenoble

+33 (0)4 76 46 49 01 +33 (0)4 76 46 07 42 info@comsol.fr

www.comsol.fr

Germany

COMSOL Multiphysics GmbH

Berliner Str. 4

D-37073 Göttingen

+49-551-99721-0

+49-551-99721-29

info@comsol.de

www.comsol.de

India

COMSOL Multiphysics Pvt. Ltd. Esquire Centre,

C-Block, 3rd Floor No. 9, M. G. Road Bangalore 560001 Karnataka

+91-80-4092-3859 +91-80-4092-3856 info@comsol.co.in

www.comsol.co.in

Italy

COMSOL S.r.l.

Via Vittorio Emanuele II, 22 25122 Brescia

+39-030-3793800 +39-030-3793899 info.it@comsol.com

www.comsol.it

Norway

COMSOL AS Postboks 5673 Sluppen Søndre gate 7 NO-7485 Trondheim +47 73 84 24 00 +47 73 84 24 01 info@comsol.no

www.comsol.no

Sweden

COMSOL AB

Tegnérgatan 23 SE-111 40 Stockholm +46 8 412 95 00 +46 8 412 95 10 info@comsol.se

www.comsol.se

Switzerland

COMSOL Multiphysics GmbH Technoparkstrasse 1 CH-8005 Zürich

+41 (0)44 445 2140 +41 (0)44 445 2141 info@ch.comsol.com

www.ch.comsol.com

United Kingdom

COMSOL Ltd.

Broers Building

21 J J Thomson Avenue Cambridge CB3 0FA

+44-(0)-1223 451580 +44-(0)-1223 367361 info.uk@comsol.com

www.uk.comsol.com

United States

COMSOL, Inc.

1 New England Executive Park Suite 350

Burlington, MA 01803 +1-781-273-3322

+1-781-273-6603

COMSOL, Inc.

10850 Wilshire Boulevard Suite 800

Los Angeles, CA 90024 +1-310-441-4800

+1-310-441-0868

COMSOL, Inc. 744 Cowper Street

Palo Alto, CA 94301 +1-650-324-9935 +1-650-324-9936 info@comsol.com

www.comsol.com

For a complete list of international representatives, visit

www.comsol.com/contact

Home Page

www.comsol.com

COMSOL User Forums

www.comsol.com/ community/forums

CFD Module User’s Guide

1998–2011 COMSOL

Protected by U.S. Patents 7,519,518; 7,596,474; and 7,623,991. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license agreement.

COMSOL, COMSOL Desktop, COMSOL Multiphysics, and LiveLink are registered trademarks or trademarks of COMSOL AB. Other product or brand names are trademarks or registered trademarks of their respective holders.

Version:

October 2011

COMSOL 4.2a

Part No. CM021301

C o n t e n t s

C h a p t e r 1 : I n t r o d u c t i o n

About the CFD Module

 

 

18

Why CFD is Important for Modeling . . . . . . . . . . . . .

.

.

18

How the CFD Module Helps Improve Your Modeling . . . . . . .

.

.

19

Model Builder Options for Physics Feature Node Settings Windows .

.

.

20

Where Do I Access the Documentation and Model Library? . . . . . . 22 Typographical Conventions . . . . . . . . . . . . . . . . . . . 24

Overview of the User’s Guide

28

C h a p t e r 2 : Q u i c k S t a r t G u i d e

Modeling and Simulations of Fluid Flow

32

Modeling Strategy . . . . . . . . . . .

. . . . . . . . . . . 32

Geometrical Complexities . . . . . . . . . . . . . . . . . . . 33 Material Properties . . . . . . . . . . . . . . . . . . . . . . 33 Defining the Physics . . . . . . . . . . . . . . . . . . . . . . 34

Meshing . . . . . . . . . . . . . . .

. . .

. . . . . .

.

.

34

The Choice of Solver and Solver Settings. . .

. . .

. . . . . .

.

.

36

The CFD Module Physics Interfaces

 

 

 

 

37

C h a p t e r 3 : C h e m i c a l S p e c i e s T r a n s p o r t B r a n c h

The Mechanisms for Chemical Species Transport

 

 

 

44

Coupling to Other Physics Interfaces . . . . . . . . . .

. . .

.

.

45

Adding a Chemical Species Transport Interface . . . . . .

. . . .

.

46

The Transport of Concentrated Species Interface

 

 

 

47

Transport Feature . . . . . . . . . . . . . . . . .

. . .

.

.

50

C O N T E N T S | 3

Reactions. . . . . . . . . . . . . . . . . . .

. . . . . . . 53

Initial Values. . . . . . . . . . . . . . . . . . . . . . . . . 54

Boundary Conditions for the Transport of Concentrated Species

 

 

 

Interface . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

54

Mass Fraction . . . . . . . . . . . . . . . . .

. . . . .

.

.

55

Flux . . . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

56

Inflow . . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

56

No Flux . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

57

Outflow . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

58

Flux Discontinuity . . . . . . . . . . . . . . .

. . . . .

.

.

58

Symmetry . . . . . . . . . . . . . . . . . .

. . . . .

.

.

59

Open Boundary . . . . . . . . . . . . . . . .

. . . . . .

.

59

The Reacting Flow, Concentrated Species Interface

 

 

 

61

Transport Properties . . . . . . . . . . . . . . . . . . . . . 63

Diffusion . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

64

Porous Matrix Properties. . . . . . . . . . . . .

. . . . .

.

.

64

Initial Values. . . . . . . . . . . . . . . . . .

. . . . . . . 65

Domain Features for the Reacting Flow, Concentrated Species

 

 

 

Interface . . . . . . . . . . . . . . . . . . .

. . . . . . . 65

Boundary Conditions for the Reacting Flow, Concentrated Species

 

 

 

Interface . . . . . . . . . . . . . . . . . . .

. . . . .

.

.

66

Reacting Boundary . . . . . . . . . . . . . . .

. . . . . .

.

66

The Reacting Flow, Diluted Species Interface

 

 

 

67

Transport Properties . . . . . . . . . . . . . .

. . . . .

.

.

69

Porous Matrix Properties . . . . . . . . . . . .

. . . . .

.

.

70

Initial Values. . . . . . . . . . . . . . . . . .

. . . . . . . 70

Domain Features for the Reacting Flow, Diluted Species Interface . .

.

.

71

Boundary Conditions for the Reacting Flow, Diluted Species Interface. . . 71

Pair and Point Conditions for the Reacting Flow, Diluted Species

 

 

 

Interface . . . . . . . . . . . . . . . . . . . . . . . .

.

.

72

Theory for the Transport of Concentrated Species Interface

 

 

73

Multicomponent Mass Transport . . . . . . . . . . . . . . . . . 73

Multicomponent Diffusion: Mixture-Average Approximation . . . .

.

.

74

Multispecies Diffusion: Fick’s Law Approximation. . . . . . . . .

.

.

75

Multicomponent Thermal Diffusion . . . . . . . . . . . . . .

.

.

76

4 | C O N T E N T S

References for the Transport of Concentrated Species Interface . . . . . 77

Theory for the Reacting Flow, Concentrated Species

 

Interface

78

Domain Equations . . . . . . . . . . . . . . . . . . . . . . 78

Combined Boundary Conditions . . . . . . . . . . . . . . . . . 78

Theory for the Reacting Flow, Diluted Species Interface

80

Effective Mass Transport Parameters in Porous Media . . . . . . .

. . 80

C h a p t e r 4 : S i n g l e - P h a s e F l o w B r a n c h

The Mechanisms for Modeling Single-Phase Flow Interfaces

 

82

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

.

82

The Single-Phase Flow Interface Options . . . . . . . . . . . . .

.

83

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

.

86

The Single-Phase Flow, Laminar Flow and Creeping Flow

 

 

Interfaces

 

88

The Laminar Flow Interface . . . . . . . . . . . . . . . . . .

.

88

The Creeping Flow Interface . . . . . . . . . . . . . . . . .

.

92

Fluid Properties . . . . . . . . . . . . . . . . . . . . . .

.

94

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

.

96

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

.

97

The Single-Phase Flow, Turbulent Flow Interfaces

 

98

The Turbulent Flow, k- Interface . . . . . . . . . . . . . . .

.

98

The Turbulent Flow, Low Re k- Interface . . . . . . . . . . . .

 

100

The Turbulent Flow, k- Interface . . . . . . . . . . . . . . .

 

100

The Turbulent Flow, Spalart-Allmaras Interface . . . . . . . . . .

 

101

The Single-Phase Flow, Rotating Machinery Interfaces

 

103

The Rotating Machinery, Laminar Flow Interface . . . . . . . . . .

 

104

The Rotating Machinery, Turbulent Flow, k- Interface . . . . . . .

 

104

Rotating Domain . . . . . . . . . . . . . . . . . . . . . .

 

105

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

 

106

C O N T E N T S | 5

Rotating Wall . . . . . . . . . . . . . . . . . . . . . . .

106

Boundary Conditions for the Single-Phase Flow Interfaces

107

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

108

Interior Wall . . . . . . . . . . . . . . . . . . . . . . .

113

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

121

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

126

Open Boundary . . . . . . . . . . . . . . . . . . . . . .

127

Boundary Stress . . . . . . . . . . . . . . . . . . . . . .

129

Periodic Flow Condition . . . . . . . . . . . . . . . . . . .

132

Flow Continuity . . . . . . . . . . . . . . . . . . . . . .

133

Pressure Point Constraint . . . . . . . . . . . . . . . . . .

133

Theory for the Single-Phase Flow Interfaces

134

Non-Newtonian Flow—The Power Law and the Carreau Model . . . .

134

Theory for the Pressure, No Viscous Stress Boundary Condition . . .

136

Theory for the Laminar Inflow Condition . . . . . . . . . . . .

136

Theory for the Laminar Outflow Condition. . . . . . . . . . . .

137

Theory for the Slip Velocity Wall Boundary Condition. . . . . . . .

137

Theory for the Vacuum Pump Outlet Condition . . . . . . . . . .

139

Theory for the No Viscous Stress Condition . . . . . . . . . . .

140

Theory for the Mass Flow Inlet Condition . . . . . . . . . . . .

141

Theory for the Turbulent Flow Interfaces

143

Turbulence Modeling . . . . . . . . . . . . . . . . . . . .

143

The k- Turbulence Model . . . . . . . . . . . . . . . . . .

147

The k- Turbulence Model . . . . . . . . . . . . . . . . . .

151

The Low Reynolds Number k- Turbulence Model . . . . . . . . .

154

The Spalart-Allmaras Turbulence Model . . . . . . . . . . . . .

156

Inlet Values for the Turbulence Length Scale and Intensity . . . . . .

157

Pseudo Time Stepping for Turbulent Flow Models . . . . . . . . .

158

References for the Single-Phase Flow, Turbulent Flow Interfaces . . . .

159

6 | C O N T E N T S

Theory for the Rotating Machinery Interfaces

160

C h a p t e r 5 : T h i n - F i l m F l o w B r a n c h

The Mechanisms for Modeling Thin-Film Flow Interfaces

162

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

162

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

163

The Lubrication Shell Interface

164

Fluid-Film Properties . . . . . . . . . . . . . . . . . . . .

165

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

166

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

167

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

167

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

168

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

168

The Thin-Film Flow Interface

169

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

170

Fluid-Film Properties . . . . . . . . . . . . . . . . . . . .

170

Border. . . . . . . . . . . . . . . . . . . . . . . . . .

171

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

172

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

172

Theory for the Thin-Film Flow Interfaces

174

Conditions for Film Damping . . . . . . . . . . . . . . . . .

174

The Reynolds Equation . . . . . . . . . . . . . . . . . . .

176

Structural Loads . . . . . . . . . . . . . . . . . . . . . .

177

Gas Outflow Conditions . . . . . . . . . . . . . . . . . . .

178

Rarefaction and Slip Effects . . . . . . . . . . . . . . . . . .

178

Geometry Orientations . . . . . . . . . . . . . . . . . . .

180

References for the Thin-Film Flow Interfaces . . . . . . . . . . .

181

C O N T E N T S | 7

C h a p t e r 6 : M u l t i p h a s e F l o w B r a n c h

The Mechanisms for Modeling Multiphase Flow

184

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

184

The Multiphase Flow Interface Options . . . . . . . . . . . . .

185

The Relationship Between the Interfaces . . . . . . . . . . . . .

185

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

189

The Laminar Flow, Two-Phase, Level Set and Phase Field

 

Interfaces

190

The Laminar Two-Phase Flow, Level Set Interface . . . . . . . . .

191

The Laminar Two-Phase Flow, Phase Field Interface . . . . . . . . .

194

Domain Level Settings for the Level Set and Phase Field Interfaces . . .

195

Fluid Properties . . . . . . . . . . . . . . . . . . . . . .

196

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

199

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

199

Gravity . . . . . . . . . . . . . . . . . . . . . . . . .

199

Boundary Conditions for the Level Set and Phase Field Interfaces . . .

200

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

201

Initial Interface. . . . . . . . . . . . . . . . . . . . . . .

204

The Turbulent Flow, Two-Phase, Level Set and Phase Field

 

Interfaces

206

The Turbulent Flow, Two-Phase Flow, Level Set Interface. . . . . . .

206

The Turbulent Two-Phase Flow, Phase Field Interface . . . . . . . .

208

Wall Distance Interface and the Distance Equation . . . . . . . . .

209

Theory for the Two-Phase Flow Interfaces

211

Level Set and Phase Field Equations . . . . . . . . . . . . . . .

211

Conservative and Non-Conservative Formulations . . . . . . . . .

214

Phase Initialization . . . . . . . . . . . . . . . . . . . . .

214

Numerical Stabilization . . . . . . . . . . . . . . . . . . .

215

References for the Level Set and Phase Field Interfaces . . . . . . .

215

8 | C O N T E N T S

C h a p t e r 7 : M a t h e m a t i c s , M o v i n g I n t e r f a c e B r a n c h

The Level Set Interface

218

Level Set Model . . . . . . . . . . . . . . . . . . . . . .

219

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

220

Boundary Conditions for the Level Set Function . . . . . . . . . .

220

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

221

Initial Interface. . . . . . . . . . . . . . . . . . . . . . .

221

No Flow . . . . . . . . . . . . . . . . . . . . . . . . .

221

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

221

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

222

The Phase Field Interface

223

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

224

Phase Field Model . . . . . . . . . . . . . . . . . . . . .

225

Boundary Conditions for the Phase Field Function . . . . . . . . .

226

Initial Interface. . . . . . . . . . . . . . . . . . . . . . .

226

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

226

Wetted Wall . . . . . . . . . . . . . . . . . . . . . . .

227

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

227

Theory for the Level Set Interface

228

The Level Set Method . . . . . . . . . . . . . . . . . . . .

228

Conservative and Non-Conservative Form . . . . . . . . . . . .

230

Initializing the Level Set Function . . . . . . . . . . . . . . . .

230

Variables For Geometric Properties of the Interface . . . . . . . .

231

Reference for the Level Set Interface . . . . . . . . . . . . . .

231

Theory for the Phase Field Interface

232

About the Phase Field Method. . . . . . . . . . . . . . . . .

232

The Equations for the Phase Field Method . . . . . . . . . . . .

233

Conservative and Non-Conservative Forms . . . . . . . . . . .

234

Additional Sources of Free Energy . . . . . . . . . . . . . . .

234

Variables and Expressions . . . . . . . . . . . . . . . . . .

235

Reference For the Phase Field Interface . . . . . . . . . . . . .

235

C O N T E N T S | 9

C h a p t e r 8 : B u b b l y F l o w a n d M i x t u r e M o d e l B r a n c h e s

The Bubbly Flow Interfaces

238

The Laminar Bubbly Flow Interface . . . . . . . . . . . . . . .

238

The Turbulent Bubbly Flow Interface . . . . . . . . . . . . . .

240

Fluid Properties . . . . . . . . . . . . . . . . . . . . . .

243

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

246

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

248

Gravity . . . . . . . . . . . . . . . . . . . . . . . . .

248

Mass Transfer . . . . . . . . . . . . . . . . . . . . . . .

249

Boundary Conditions for the Bubbly Flow Interfaces . . . . . . . .

250

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

251

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

252

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

254

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

255

Gas Boundary Conditions Equations . . . . . . . . . . . . . .

256

The Mixture Model Interfaces

257

The Mixture Model, Laminar Flow Interface. . . . . . . . . . . .

257

The Mixture Model, Turbulent Flow Interface . . . . . . . . . . .

260

Mixture Properties . . . . . . . . . . . . . . . . . . . . .

262

Mass Transfer . . . . . . . . . . . . . . . . . . . . . . .

265

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

266

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

267

Gravity . . . . . . . . . . . . . . . . . . . . . . . . .

267

Boundary Conditions for the Mixture Model Interfaces . . . . . . .

268

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

269

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

270

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

271

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

272

Theory for the Bubbly Flow Interface

274

The Bubbly Flow Equations . . . . . . . . . . . . . . . . . .

274

Turbulence Modeling in Bubbly Flow Applications . . . . . . . . .

276

References for the Bubbly Flow Interfaces . . . . . . . . . . . .

278

10 | C O N T E N T S

Theory for the Mixture Model Interface

279

The Mixture Model Equations . . . . . . . . . . . . . . . . .

279

Dispersed Phase Boundary Conditions Equations . . . . . . . . .

281

Turbulence Modeling in Mixture Models . . . . . . . . . . . . .

282

Slip Velocity Models . . . . . . . . . . . . . . . . . . . . .

283

References for the Mixture Model Interfaces . . . . . . . . . . .

285

C h a p t e r 9 : E u l e r - E u l e r M o d e l B r a n c h

The Euler-Euler Model, Laminar Flow Interface

288

Domain Conditions for the Euler-Euler Model, Laminar Flow Interface .

290

Phase Properties . . . . . . . . . . . . . . . . . . . . . .

291

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

293

Boundary, Point, and Pair Conditions for the Euler-Euler Model,

 

Laminar Flow Interface . . . . . . . . . . . . . . . . . . .

294

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

294

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

295

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

297

Theory for the Euler-Euler Model, Laminar Flow Interface

299

The Euler-Euler Model Equations . . . . . . . . . . . . . . . .

299

References for the Euler-Euler Model, Laminar Flow Interface . . . . .

305

C h a p t e r 1 0 : P o r o u s M e d i a a n d S u b s u r f a c e F l o w

B r a n c h

The Mechanisms for Modeling Porous Media and Subsurface

 

Flow

308

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

308

The Porous Media Flow Interface Options . . . . . . . . . . . .

309

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

311

The Darcy’s Law Interface

313

Fluid and Matrix Properties . . . . . . . . . . . . . . . . . .

314

C O N T E N T S | 11

Mass Source . . . . . . . . . . . . . . . . . . . . . . .

316

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

316

Boundary Conditions for the Darcy’s Law Interface . . . . . . . . .

316

Pressure . . . . . . . . . . . . . . . . . . . . . . . . .

317

Mass Flux. . . . . . . . . . . . . . . . . . . . . . . . .

317

Inflow Boundary . . . . . . . . . . . . . . . . . . . . . .

318

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

319

No Flow . . . . . . . . . . . . . . . . . . . . . . . . .

319

The Brinkman Equations Interface

320

Fluid and Matrix Properties . . . . . . . . . . . . . . . . . .

322

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

323

Forchheimer Drag . . . . . . . . . . . . . . . . . . . . .

324

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

324

Mass Source . . . . . . . . . . . . . . . . . . . . . . .

324

Boundary Conditions for the Brinkman Equations Interface . . . . . .

325

The Free and Porous Media Flow Interface

326

Fluid Properties . . . . . . . . . . . . . . . . . . . . . .

328

Porous Matrix Properties. . . . . . . . . . . . . . . . . . .

329

Forchheimer Drag . . . . . . . . . . . . . . . . . . . . .

330

Volume Force . . . . . . . . . . . . . . . . . . . . . . .

330

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

331

Boundary Conditions for the Free and Porous Media Flow Interface . .

331

Microfluidic Wall Conditions . . . . . . . . . . . . . . . . .

331

The Two-Phase Darcy’s Law Interface

333

Domain, Boundary, and Pair Conditions for the Two-Phase Darcy’s

 

Law Interface . . . . . . . . . . . . . . . . . . . . . . .

334

Fluid and Matrix Properties . . . . . . . . . . . . . . . . . .

335

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

336

No Flux . . . . . . . . . . . . . . . . . . . . . . . . .

337

Pressure and Saturation . . . . . . . . . . . . . . . . . . .

337

Mass Flux. . . . . . . . . . . . . . . . . . . . . . . . .

338

Inflow Boundary . . . . . . . . . . . . . . . . . . . . . .

338

Outflow . . . . . . . . . . . . . . . . . . . . . . . . .

339

12 | C O N T E N T S

Theory for the Darcy’s Law Interface

340

Darcy’s Law—Equation Formulation . . . . . . . . . . . . . .

340

Theory for the Brinkman Equations Interface

341

About the Brinkman Equations . . . . . . . . . . . . . . . .

341

Brinkman Equations Theory. . . . . . . . . . . . . . . . . .

342

References for the Brinkman Equations Interface . . . . . . . . . .

343

Theory for the Free and Porous Media Flow Interface

344

Reference for the Free and Porous Media Flow Interface . . . . . . .

344

Theory for the Two-Phase Darcy’s Law Interface

345

Darcy’s Law—Equation Formulation . . . . . . . . . . . . . .

345

C h a p t e r 1 1 : H i g h M a c h N u m b e r F l o w B r a n c h

The High Mach Number Flow Interfaces

348

The High Mach Number Flow, Laminar Flow Interface. . . . . . . .

349

The High Mach Number Flow, Turbulent Flow, k- Interface . . . . .

351

The High Mach Number Flow, Turbulent Flow, Spalart-Allmaras

 

Interface . . . . . . . . . . . . . . . . . . . . . . . . .

353

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

353

Shared Interface Features. . . . . . . . . . . . . . . . . . .

354

Fluid . . . . . . . . . . . . . . . . . . . . . . . . . .

355

Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . .

358

Outlet . . . . . . . . . . . . . . . . . . . . . . . . . .

360

Theory for the High Mach Number Interfaces

362

Consistent Inlet and Outlet Conditions . . . . . . . . . . . . .

362

Pseudo Time Stepping for High Mach Number Flow Models . . . . .

366

References for the High Mach Number Flow Interfaces . . . . . . .

367

C O N T E N T S | 13

C h a p t e r 1 2 : N o n - I s o t h e r m a l F l o w B r a n c h

The Mechanisms for Modeling Non-Isothermal Flow

370

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

370

The Non-Isothermal Flow Interface Options . . . . . . . . . . .

371

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

373

The Non-Isothermal Flow Interfaces

374

The Non-Isothermal Flow and Conjugate Heat Transfer,

 

Laminar Flow Interfaces

376

The Non-Isothermal Flow, Laminar Flow Interface . . . . . . . . .

376

The Conjugate Heat Transfer, Laminar Flow Interface . . . . . . . .

379

The Non-Isothermal Flow and Conjugate Heat Transfer,

 

Turbulent Flow Interfaces

381

The Turbulent Flow, k- and Turbulent Flow Low Re k- Interfaces. . .

381

The Turbulent Flow, Spalart-Allmaras Interface . . . . . . . . . .

383

The Turbulent Flow, k- Interface . . . . . . . . . . . . . . .

384

Shared Interface Features

385

Fluid . . . . . . . . . . . . . . . . . . . . . . . . . .

385

Wall. . . . . . . . . . . . . . . . . . . . . . . . . . .

389

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

390

Pressure Work . . . . . . . . . . . . . . . . . . . . . .

391

Viscous Heating . . . . . . . . . . . . . . . . . . . . . .

391

Theory for the Non-Isothermal Flow and Conjugate Heat

 

Transfer Interfaces

393

Turbulent Non-Isothermal Flow Theory . . . . . . . . . . . . .

395

References for the Non-Isothermal Flow and Conjugate Heat Transfer

 

Interfaces. . . . . . . . . . . . . . . . . . . . . . . . .

399

14 | C O N T E N T S

C h a p t e r 1 3 : H e a t T r a n s f e r B r a n c h

The Mechanisms for Modeling Heat Transfer in the CFD

 

Module

402

Selecting the Right Interface. . . . . . . . . . . . . . . . . .

402

The Heat Transfer Interface Options . . . . . . . . . . . . . .

405

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .

406

The Heat Transfer Interfaces

407

Accessing the Heat Transfer Interfaces via the Model Wizard . . . . .

407

The Heat Transfer Interface

409

Heat Transfer in Solids. . . . . . . . . . . . . . . . . . . .

411

Translational Motion . . . . . . . . . . . . . . . . . . . .

413

Pressure Work . . . . . . . . . . . . . . . . . . . . . .

413

Heat Transfer in Fluids . . . . . . . . . . . . . . . . . . . .

414

Viscous Heating . . . . . . . . . . . . . . . . . . . . . .

417

Heat Source. . . . . . . . . . . . . . . . . . . . . . . .

418

Initial Values. . . . . . . . . . . . . . . . . . . . . . . .

419

Boundary Conditions for the Heat Transfer Interfaces . . . . . . . .

419

Temperature . . . . . . . . . . . . . . . . . . . . . . .

420

Thermal Insulation . . . . . . . . . . . . . . . . . . . . .

421

Outflow . . . . . . . . . . . . . . . . . . . . . . . . .

421

Symmetry . . . . . . . . . . . . . . . . . . . . . . . .

422

Heat Flux. . . . . . . . . . . . . . . . . . . . . . . . .

422

Inflow Heat Flux . . . . . . . . . . . . . . . . . . . . . .

423

Open Boundary . . . . . . . . . . . . . . . . . . . . . .

424

Periodic Heat Condition . . . . . . . . . . . . . . . . . . .

424

Surface-to-Ambient Radiation . . . . . . . . . . . . . . . . .

424

Boundary Heat Source. . . . . . . . . . . . . . . . . . . .

425

Heat Continuity . . . . . . . . . . . . . . . . . . . . . .

425

Pair Thin Thermally Resistive Layer . . . . . . . . . . . . . . .

425

Thin Thermally Resistive Layer. . . . . . . . . . . . . . . . .

426

Line Heat Source . . . . . . . . . . . . . . . . . . . . . .

427

Point Heat Source . . . . . . . . . . . . . . . . . . . . .

427

Convective Cooling . . . . . . . . . . . . . . . . . . . . .

428

C O N T E N T S | 15

Out-of-Plane Heat Transfer Features

430

Out-of-Plane Convective Cooling . . . . . . . . . . . . . . .

430

Out-of-Plane Radiation . . . . . . . . . . . . . . . . . . .

431

Out-of-Plane Heat Flux . . . . . . . . . . . . . . . . . . .

432

Change Thickness . . . . . . . . . . . . . . . . . . . . .

433

The Heat Transfer in Porous Media Interface

434

Porous Matrix . . . . . . . . . . . . . . . . . . . . . . .

435

Heat Transfer in Fluids . . . . . . . . . . . . . . . . . . .

436

Thermal Dispersion . . . . . . . . . . . . . . . . . . . . .

438

Heat Source. . . . . . . . . . . . . . . . . . . . . . . .

438

Out-of-Plane Heat Transfer Theory

440

Equation Formulation . . . . . . . . . . . . . . . . . . . .

440

Activating Out-of-Plane Heat Transfer and Thickness . . . . . . . .

441

Theory for the Heat Transfer in Porous Media Interface

442

C h a p t e r 1 4 : G l o s s a r y

Glossary of Terms

444

16 | C O N T E N T S

1

I n t r o d u c t i o n

This guide describes the CFD Module, an optional add-on package for COMSOL Multiphysics that provides you with tools for computational fluid dynamics, CFD. The modeling of fluid flow is an increasingly important part in development of new equipment and processes.

This chapter introduces you to the capabilities of the CFD Module. A summary of the physics interfaces and where you can find documentation and model examples is also included. The last section is a brief overview with links to each chapter in this guide.

About the CFD Module

Overview of the User’s Guide

17

A b o u t t h e C F D M o d u l e

In this section:

Why CFD is Important for Modeling

How the CFD Module Helps Improve Your Modeling

Model Builder Options for Physics Feature Node Settings Windows

Where Do I Access the Documentation and Model Library?

Typographical Conventions

Why CFD is Important for Modeling

Computational fluid dynamics, CFD, is an increasingly important part of many development processes, and is a well established field within many different engineering disciplines; mechanical, chemical, civil, aeronautical, for example, and even more specialized areas such as biomedical engineering.

Flow is such an integral part to so many different processes and applications that it must be understood and optimized to improve these applications. Often the flow itself is not the main focus in a simulation. Instead it is how the flow affects other process and application parameters that is important. The transport of species through the different parts of a chemical reactor, the effective cooling of a computer’s hard drive and electronics, the dispersion of energy within the damping film of an accelerometer, the extent of nuclear waste spreading from a subterranean repository—these are applications where the flow must be fully understood and are an integral part of the process’s description and simulation.

In many situations, while the flow may add necessary operational parameters to a process or application, it is also affected by them. For example, a chemical reactor creates a pressure that disturbs the flow, the electronic heat affects the flows density and flow properties, the accelerometer elasticity imposes an oscillation on the flow, while the subterranean environments poroelasticity changes the course of the flow.

A description combining several laws of physics is often required to produce accurate simulations of real world applications involving flow. Being able to effectively simulate such increases understanding of the studied process and application, which in turn leads to optimization of the flow and other parameters.

18 | C H A P T E R 1 : I N T R O D U C T I O N

Historically, a sophisticated modeling tool was a privilege that only large companies could afford, where the savings made in bulk production justified the computer software costs and need for specialized engineers. Today’s engineers are educated in the use of software modeling tools, and are often expected to create realistic models of advanced systems on their personal computers. This is where COMSOL Multiphysics® can improve your modeling capabilities.

How the CFD Module Helps Improve Your Modeling

The CFD Module is an optional package that extends the COMSOL Multiphysics® modeling environment with customized user interfaces and functionality optimized for the analysis of all types of fluid-flow. It is developed for a wide audience including researchers, developers, teachers, and students. It is not just a tool for CFD experts; it can be used by all engineers and scientists who work with systems and applications where momentum transport or fluid-flow are an important part of a process or application.

The module uses the latest research possible to simulate flow and it provides the easiest possible simulation environment for CFD applications. The solvers and meshing is optimized for flow applications with robust stabilization parameters automatically available.

The ready coupling of heat and mass transport to fluid-flow enables modeling of a wide range of industrial applications such as heat exchangers, turbines, separations units, and ventilation systems.

Ready-to-use interfaces enable you to model laminar and turbulent flows in singleor multi-phase flow. Functionality to treat coupled free and porous media flow, stirred vessels, and fluid structure interaction is also included.

Together with COMSOL Multiphysics and its other optional packages, the CFD Module takes flow simulations to a new level, allowing for arbitrary coupling to physics interfaces describing other physical phenomena, such as structural mechanics, electromagnetics, or even user-defined transport equations. This allows for effortless modeling of any Multiphysics application involving fluid-flow.

A B O U T T H E C F D M O D U L E | 19

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]