Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_Integraly_2015v1.pdf
Скачиваний:
113
Добавлен:
25.06.2015
Размер:
1.99 Mб
Скачать

. Число

заключено

между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка , такая что

.

Это свойство имеет простую геометрическую интерпретацию: если непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

6*. Формула среднего значения для определенного интеграла.

Теорема о среднем. Если f(x) непрерывна на отрезке [a,b], то существует точка

, такая что

.

Док-во. Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда

 

 

 

.

Число

заключено между минимальным и максимальным значениями функции на отрезке. Одно

из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение,

расположенное между m и M. Таким образом, существует точка

, такая что

.

Это свойство имеет простую геометрическую интерпретацию: если непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

7. Интеграл с переменным верхним пределом. Его непрерывность и дифференцируемость.

Рассмотрим функцию f (x), интегрируемую по Риману на отрезке [a, b]. Раз она интегрируема на [a, b], то она также интегрируема на [a, x] x [a, b]. Тогда при каждом x [a, b] имеет смысл выражение , и при каждом x оно равно некоторому числу.

Таким образом, каждому x [a, b] поставлено в соответствие некоторое число ,

т.е. на [a, b] задана функция:

(3.1)

Определение:

Функция F (x), заданная в (3.1), а также само выражение называется

интегралом с переменным верхним пределом. Она определена на всем отрезке [a, b] интегрируемости функции f (x).

Теорема:

Условие: f (t) непрерывна на [a, b], а функция F (x) задана формулой (3.1). Утверждение: Функция F(x) дифференцируема на [a, b], причем F (x) = f (x). (В точке a она дифференцируема справа, а в точке b – слева.)

Доказательство:

6

Поскольку для функции одной переменной F (x) дифференцируемость равносильна существованию производной во всех точках (в точке a справа, а в точке b – слева), то мы найдем производную F (x). Рассмотрим разность

Таким образом,

,

при этом точка ξ лежит на отрезке [x, x + ∆x] (или [x + ∆x, x] если ∆x < 0).

Теперь вспомним, что производная функции F(x) в заданной точке x [a, b] равна пределу разностного отношения:

. Из равенства имеем:

,

Устремляя теперь ∆x → 0, в левой части данного равенства получим F’(x), a в правой

Вспомним определение непрерывности функции f (t) в точке x:

Пусть x1 в этом определении равен ξ. Поскольку ξ [x + ∆x, x] (ξ [x, x + ∆x]), а

∆x → 0, то |x − ξ| → 0, и по определению непрерывности, f (ξ) → f (x). Отсюда имеем:

F’(x) = f (x).

Следствие:

Условие: f (x) непрерывна на [a, b].

Утверждение: Любая первообразная функции f (x) имеет вид

где C R – некоторая константа.

Доказательство. По теореме 3.1 функция

является первообразной для f(x). Предположим, что G(x) – другая первообразная f (x).

Тогда G’(x) = f(x) и для функции F(x) − G(x) имеем: (F (x) + G(x))’ = F’(x)−G’(x) = f (x)−f(x) ≡ 0. Значит, производная функции F (x)−G(x) равна нулю, следовательно, эта функция есть постоянная: F(x) − G(x) = const.

8. Формула Ньютона-Лейбница для определенного интеграла.

Теорема:

Условие: f(t) непрерывна на [a, b], а F(x) ее любая первообразная. Утверждение:

Доказательство: Рассмотрим некоторую первообразную F (x) функции f (x). По Следствию из Теоремы «О дифференцируемости интеграла с переменным верхним пределом» (см. предыдущий вопрос) она имеет вид . Отсюда

a

F (a) d (t)dt c 0 c => c=F(a), и

a

.

Перенесем F(a) в последнем равенстве в левую часть, переобозначим переменную интегрирования снова через x и получим формулу Ньютона – Лейбница:

9. Вычисление определенного интеграла по частям и заменой переменной.

При выводе формулы интегрирования по частям было получено равенство u dv = d (uv) – v du. (d (uv)= u dv+ v du) Проинтегрировав его в пределах от a до b и учитывая теорему «о свойствах определённого интеграла», получим

Как это следует из теоремы «о свойствах неопределённого интеграла», первый член в правой части равен разности значений произведения uv при верхнем и нижнем пределах интегрирования. Записав эту разность кратко в виде

получаем формулу интегрирования по частям для вычисления определенного интеграла:

7

Перейдём к вычислению определённого интеграла методом замены переменной. Пусть

где, по определению, F(x) – первообразная для f(x). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16?) можно записать

В этом выражении первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции, равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения aи b, т.е.

Тогда

Но, согласно формуле Ньютона-Лейбница, разность F(b) – F(a) есть

поскольку F(x) – первообразная для f(x). Итак,

(50)

Это и есть формула перехода к новой переменной под знаком определённого интеграла. С её помощью определённый интеграл

после замены переменной преобразуется в определённый интеграл относительно новой переменной t. При этом старые

пределы интегрирования a и b заменяются новыми пределами α и β. Чтобы найти новые пределы, нужно в уравнение

поставить значения x = a и x = b, т.е. решить уравнения

и

относительно α и β. После нахождения новых пределов интегрирования вычисление определённого интеграла сводится к применению формулы НьютонаЛейбница к интегралу от новой переменной t. В первообразной функции, которая получается в результате нахождения интеграла, возвращаться к старой переменной нет необходимости.

При вычислении определённого интеграла методом замены переменной часто бывает удобно выражать не старую переменную как функцию новой, а, наоборот, новую – как функцию старой.

10. Применение определенного интеграла (площадь плоской фигуры, длина дуги кривой, объем тела вращения).

Вычисление площадей плоских фигур: Прямоугольные координаты

Площадь криволинейной трапеции, расположенной «выше» оси абсцисс (ƒ(х) ≥ 0), равна соответствующему определенному интегралу:

Формула (41.1) получена путем применения метода сумм. Пусть криволинейная трапеция ограничена линиями у = ƒ(х) ≥ 0, х = а, х = b, у = 0 (см. рис. 174).

Для нахождения площади S этой трапеции проделаем следующие операции:

1.Возьмем произвольное х [а; b] и будем считать, что S = S(x).

2.Дадим аргументу х приращение Δх = dx (х + Δх є [а; b]). Функция S = S(x) получит приращение ΔS,

представляющее собой площадь «элементарной криволинейной трапеции» (на рисунке она выделена). Дифференциал площади dS есть главная часть приращения ΔS при Δх → 0, и, очевидно, он равен площади прямоугольника с основанием dx и высотой у: dS = у • dx.

3.Интегрируя полученное равенство в пределах от х = а до х = b, получаем

8

Отметим,что если криволинейная трапеция расположена «ниже» оси Ох (ƒ(х) < 0), то ее площадь может быть найдена по формуле

Формулы (41.1)и (41.2) можно объединить в одну:

Если криволинейная трапеция ограничена прямыми у = с и у=d, осью Оу и непрерывной кривой х = φ(у) ≥ 0 (см. рис. 177), то ее площадь находится по

формуле И, наконец, если криволинейная трапеция ограничена кривой, заданной параметрически

прямыми х = а и х = b и осью Ох, то площадь ее находится по формуле

где а и β определяются из равенств х(а) = а и х(β) =b.

Полярные координаты

Найдем площадь S криволинейного сектора, т. е. плоской фигуры, ограниченной непрерывной линией r=r(φ) и двумя лучами φ=а и φ=β (а < β), где r и φ — полярные координаты (см. рис. 180).

1. Будем считать часть искомой площади S как функцию угла φ, т. е. S = S(φ), где а ≤φ≤β (если φ = а, то S(a) = 0, если φ=β, то S(β) = S).

2. Если текущий полярный угол φ получит приращение Δφ = dφ, то приращение площади AS равно площади «элементарного криволинейного сектора» OAB.

Дифференциал dS представляет собой главную часть приращения ΔS при dφ→0 и равен площади кругового сектора О АС (на рисунке она

заштрихована) радиуса r с центральным углом dφ. Поэтому

3. Интегрируя полученное равенство в пределах от φ = а до φ = β, получим искомую площадь

Вычисление длины дуги плоской кривой Пусть в прямоугольных координатах дана плоская кривая АВ, уравнение

которой у=ƒ(х), где а≤х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремится к нулю. Покажем, что если функция у=ƒ(х) и ее производная у' = ƒ'(х) непрерывны на отрезке [а; b], то кривая АВ имеет длину, равную

1. Точками х0 = а, х1..., хn = b (х0 < x1 < ...< хn) разобьем отрезок [а; b] на n частей (см. рис. 183). Пусть этим точкам соответствуют точки М0 = А, M1,...,Mn =В на кривой АВ. Проведем хорды М0M1, M1M2,..., Мn-1Мn, длины которых обозначим соответственно через ΔL1, AL2,..., ΔLn. Получим ломаную M0M1M2 ...

Mn-ιMn, длина которой равна Ln=ΔL1 + ΔL2+...+ ΔLn =

2. Длину хорды (или звена ломаной) ΔL1 можно найти по теореме Пифагора из треугольника с катетами Δxi и Δуi:

По теореме Лагранжа о конечном приращении функции Δуi=ƒ'(сi)•Δхi, где ci є (xi-1;xi). Поэтому

9

Соседние файлы в предмете Дифференциальное и интегральное исчисление