Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ZhBK

.docx
Скачиваний:
4
Добавлен:
12.06.2015
Размер:
44.75 Кб
Скачать

1.Железобето́н — строительный композиционный материал, состоящий из бетона и стали.[1] Запатентован в 1867 году Жозефом Монье как материал для изготовления кадок для растений.

Основными условиями, обеспечивающими надежную совместную работу бетона и стальной арматуры в железобетонных конструкциях, являются:

1) сцепление арматуры с бетоном по площади их контакта, исключающее продергивание (сдвиг) арматуры в бетоне;

2) примерное равенство коэффициентов температурного удлинения (укорочения) бетона аЬ = 0, 000007...0, 00001 град-1 и стальной арматуры ast = 0, 000012 град-1.

Материалы с разными коэффициентами линейных температурных деформаций независимо от надежного сцепления между ними работают в усложненных условиях, так как при перепадах температуры возникают собственные натяжения, снижающие сцепление между материалами; небольшая разница коэффициентов линейных температурных деформаций бетона и стали исключает появление собственных напряжений в них и надежное сцепление арматуры с бетоном сохраняется при изменениях температуры до 100 С;

3) способность бетона при соответствующей его плотности, достаточной толщине защитного слоя, кратковременном раскрытии трещин не более 0, 4 мм и содержании цемента более 250 кг/м3 надежно предохранять арматуру от коррозии и непосредственного действия огня.

Защитное действие бетона на стальную арматуру основано на способности щелочной среды поддерживать химически пассивное состояние стали неопределенно длительное время. Основным фактором, определяющим надежные защитные свойства бетона, является непроницаемость его для газов и для агрессивных ионов в водных растворах.

Чтобы арматура работала в железобетонных конструкциях с заданным расчетным сопротивлением, необходимо ее завести (анкеровать) за рассматриваемое сечение элемента на длину зоны передачи напряжений с арматуры на бетон, обусловленную сцеплением арматуры с бетоном или заанкерить с помощью специальных устройств. Арматуру, концы которой надежно самоанкеруются в бетоне за счет сил сцепления, называют арматурой без анкеров в пределах длины зоны анкеровки. Арматуру, концы которой анкеруют в бетоне посредством специальных устройств, называют арматурой с анкерами на концах.

К арматуре без анкеров относят всю стержневую, проволочную профилированную арматуру и канаты однократной свивки при натяжении на упоры и достаточной передаточной прочности бетона. К арматуре с анкерами на концах относят любую арматуру, натягиваемую на бетон, а также арматуру, натягиваемую на упоры, при недостаточном ее сцеплении с бетоном (гладкая высокопрочная проволока, многопрядные канаты). В отдельных случаях применяют арматурные элементы из высокопрочной проволоки без сцепления их с бетоном (наружное размещение арматуры). Конструкции с такой арматурой по сравнению с аналогичными конструкциями, в которых имеется надежное сцепление арматуры с бетоном, требуют увеличения расхода стали. По своей сущности они являются шпренгельными конструкциями.

2.Появление железобетонных конструкций связано с большим ростом промышленности, транспорта и торговли во второй половине XIX в., когда необходимо было строительство новых фабрик, заводов, портов и многих других капитальных сооружений. К этому времени были развиты цементная промышленность и черная металлургия. Им предшествовал многовековой опыт строительства из камня, неармированного бетона, дерева и двухсотлетний опыт строительства из металла.

Исследования покрытий Царскосельского Дворца показали, что русские мастера еще в 1802 г. применяли армированный бетон, однако они не считали, что получили новый строительный материал, и не патентовали его.

Первым изделием из железобетона была лодка, построенная Ламбо во Франции в 1850 г. Первые патенты на изготовление изделий из железобетона были получены Монье в 1867... 1870 гг. В 1892 г. французский инженер Ф. Геннебик предложил монолитные железобетонные ребристые перекрытия и ряд других рациональных строительных конструкций и все последующие арматурные чертежи вычерчены условно, будто бетон является прозрачным, а арматура хорошо видимой по всей толще бетона). В России железобетон стали применять с 1886 г. для перекрытий по металлическим балкам.

В 1885 г. в Германии инж. Вайс и проф. Баушингер провели первые научные опыты по определению прочности и огнестойкости железобетонных конструкций, сохранности железа в бетоне, сил сцепления арматуры с бетоном и пр. Тогда же впервые инж. М. Кёнен высказал предположение, подтвержденное опытами, что арматура должна располагаться в тех частях конструкции, где можно ожидать растягивающие усилия.

В 1886 г. М. Кёнен предложил первый метод расчета железобетонных плит, который способствовал развитию интереса к новому материалу и более широкому распространению железобетона в Германии и Австро-Венгрии.

В 1891 г. талантливейший русский строитель проф. Н. А. Белелюбский первым провел серию испытаний железобетонных конструкций: плит, балок, арок, резервуаров, силосов для зерна, моста пролётом 17 м, которые по методике испытаний и полученным результатам во многом превосходили работы зарубежных ученых и послужили базой дляширокого распространения железобетона в строительстве. В 1911 г. в России были изданы первые технические условия и нормыдля железобетонных сооружений.

Время появления предложений Ф. Геннебика т. е. конец XIX в., можно считать началом первого этапа в развитии железобетона, характеризуемого появлением в практике разного рода железобетонных стержневых систем. С этого времени повсеместно вошел в практику и метод расчета бетонных конструкций по допустимым напряжениям, основанный на законах сопротивления упругих материалов. На развитие железобетона в этот период большое влияние оказали труды ученых Н. М. Абрамова (по расчёту армированного железобетона) и И. Г. Малюги, А. А. Байкова, Н. А. Жидкевича, М. Беляева и др. (по разработке основ технологии бетона).

В 1904 г. в г. Николаеве по проекту инженеров Н. Пятницкого и А. Барышникова был построен первый в мире морской маяк из монолитного железобетона высотой 36 м, со стенами толщиной 10 см вверху и до 20 см внизу . Примерно в то же время были осуществлены безбалочные междуэтажные перекрытия склада молочных продуктов в Москве. Однако в дореволюционной России не было условий для подлинного прогресса в развитии железобетона.

Расчеты бетонных и железобетонных конструкций следует производить в соответствии с требованиями ГОСТ 27751 по методу предельных состояний, включающему:

- предельные состояния первой группы, приводящие к полной непригодности эксплуатации конструкций;

- предельные состояния второй группы, затрудняющие нормальную эксплуатацию конструкций или уменьшающие долговечность зданий и сооружений по сравнению с предусматриваемым сроком службы.

Расчеты должны обеспечивать надежность зданий или сооружений в течение всего срока их службы, а также при производстве работ в соответствии с требованиями, предъявляемыми к ним.

Расчеты по предельным состояниям первой группы включают:

- расчет по прочности;

- расчет по устойчивости формы (для тонкостенных конструкций);

- расчет по устойчивости положения (опрокидывание, скольжение, всплывание).

Расчеты по прочности бетонных и железобетонных конструкций следует производить из условия, по которому усилия, напряжения и деформации в конструкциях от различных воздействий с учетом начального напряженного состояния (преднапряжение, температурные и другие воздействия) не должны превышать соответствующих значений, установленных нормами.

Расчеты по устойчивости формы конструкции, а также по устойчивости положения (с учетом совместной работы конструкции и основания, их деформационных свойств, сопротивления сдвигу по контакту с основанием и других особенностей) следует производить согласно указаниям нормативных документов на отдельные виды конструкций.

В необходимых случаях в зависимости от вида и назначения конструкции должны быть произведены расчеты по предельным состояниям, связанным с явлениями, при которых возникает необходимость прекращения эксплуатации (чрезмерные деформации, сдвиги в соединениях и другие явления).

Расчеты по предельным состояниям второй группы включают:

- расчет по образованию трещин;

- расчет по раскрытию трещин;

- расчет по деформациям.

Расчет бетонных и железобетонных конструкций по образованию трещин следует производить из условия, по которому усилия, напряжения или деформации в конструкциях от различных воздействий не должны превышать соответствующих их предельных значений, воспринимаемых конструкцией при образовании трещин.

Расчет железобетонных конструкций по раскрытию трещин производят из условия, по которому ширина раскрытия трещин в конструкции от различных воздействий не должна превышать предельно допустимых значений, устанавливаемых в зависимости от требований, предъявляемых

5.БЕТОН

Бетон для железобетонных конструкцийI Бетон как материал для железобетонных конструкций должен обладать вполне определенными, наперед |вадаинымнфизнко-механнческнми свойствами: необходимой прочностью, хорошим сцеплением с арматурой, до-|статочной плотностью (непроницаемостью) для защиты ^арматуры от коррозии. В зависимости от назначения железобетонной конструкции и условий ее эксплуатации бетон должен еще удовлетворять специальным требованиям: морозостойкости при многократном замораживании и оттаивании (на-|ирнмер, в панелях наружных стен зданий, в открытых сооружениях и др.), жаростойкости при длительном воздействии высоких температур, коррозионной стойкости |при агрессивном воздействии среды и др. Бетоны подразделяют по ряду признаков: Р а) структуре — плотной структуры, у которых пространство между зернами заполнителя полностью занято раатвердевшим вяжущим; крупнопористые малопесчаныеЁнбеспесчаные; порнзованные, т. е. с заполнителями и искусственной пористостью затвердевшего вяжущего; ячеистые с искусственно созданными замкнутыми порами; | б) средней плотности — особо тяжелые со средней |йлотностью более 2500 кг/м3; тяжелые — со средней плотностью более 2200 и до 2500 кг/м3; облегченные со сред-й плотностью более 1800 и до 2200 кг/м3; легкие со вредней плотностью более 500 и до 1800 кг/м3;

в) виду заполнителей —на плотных заполнителях;

ристыхзаполнителях; специальных заполнителях, удов-

творяющих требованиям биологической защиты, жа-

стойкости и др.;

г) зерновому составу — крупнозернистые с крупными

и мелкими заполнителями; мелкозернистые с мелкими

заполнителями;

д) условиям твердения — бетон естественного тверде

ния; бетон, подвергнутый тепловлажностной обработке

при атмосферном давлении; подвергнутый автоклавной

обработке при высоком давлении.

Сокращенное наименование бетонов, применяемых для несущих железобетонных конструкций, установлено следующее:

тяжелый бетон — бетон плотной структуры, на плотных заполнителях, крупнозернистый, на цементном вяжущем, при любых условиях твердения;

мелкозернистый бетон — бетон плотной структуры, тяжелый, на мелких заполнителях, на цементном вяжущем при любых условиях твердения;

легкий бетон —бетон плотной структуры, на пористых заполнителях, крупнозернистый, на цементном вяжущем, при любых условиях твердения.

7.8.

Марки бетона по прочности - используемые марки цемента - классы бетона.

Бетоны маркируются согласно прочности на сжатие в кгс/см2. Набор прочности бетоном это отдельная тема.

Важно: прочность бетона при растяжении составляет только 5-10% от предела прочности при сжатии, а предел прочности при изгибе только 10-15% от предела прочности на сжатие. Бетон не течет. За стадией упругой деформации следует разрушение. Марка

бетона М150 М200 М250 М300 М350 М400 М450 М500 М600 и выше

В целом, предел прочности при растяжении возрастает с ростом прочности при сжатии (марки бетона) , однако увеличение идет медленнее, чем нарастает прочность на сжатие. Таким образом, % отношение этих прочностей ниже для более высоких марок.

Класс бетона - это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Эта статистическая формулировка означает, что установленное свойство обеспечивается не менее чем в 95% случаев и лишь в 5% проб можно ожидать, что оно не выполненно.

Теоретически, существуют следующие классы бетонов: В1; B1,5; В2; B2,5; В3,5; B5; В7,5; B10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60.

Ниже приводится соотношение между классом и марками бетона по прочности на сжатие при нормативном коэффициенте вариации равном 13,5%:Класс бетона Средняя прочность данного класса Ближайшая марка бетона

Классы прочности арматуры (предел текучести).

А-I, А-II, А-III, А-IV, А-V, А-VI. Устаревшая маркировка по ГОСТ 5781-82

А240, А300, А400, А500, А600, А800, А1000 Современное обозначение.

Ат400, Ат500, Ат600, Ат800, Ат1000, Ат1200 Термически упрочнённая арматура строительная для изготовления железобетонных изделий и ЖБК.

Существует термомеханически упрочнённая арматурная сталь, которую применяют на заводах ЖБИ, при изготовлении преднапряжённых конструкций и изделий. Например: преднапряжённые плиты перекрытия.

12. Назначение и виды арматуры.

Арматуру в железобетонных конструкциях устанавливают преимущественно для восприятия растягивающих усилий. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия.

Арматура, устанавливаемая по расчету, называется рабочей; устанавливаемая по конструктивным и технологическим соображениям - монтажной. Монтажная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерного распределения усилий между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, температурных перепадов и т.д.

Рабочую и монтажную арматуру объединяют в арматурные изделия - сварные и вязаные сетки и каркасы, которые размещают в железобетонных конструкциях в соответствии с характером их работы под нагрузкой.

Арматура классифицирована по 4 признакам:

1) в зависимости от технологии изготовления - стержневая и проволочная. Под стержневой подразумевают арматуру любого диаметра в пределах 6 ¸ 40мм, причем независимо от того, как она поставляется промышленностью - в прутках (D>12мм, длина до 13м) или в мотках (массой до 1300кг).

2) в зависимости от способа последующего упрочнения - горячекатанная арматура может быть термически упрочненной, или упрочненной в холодном состоянии - вытяжкой, волочением.

3) По форме поверхности - бывает периодического профиля или гладкой. Выступы в виде ребер на поверхности стержневой арматуры периодического профиля, рифы или вмятины на поверхности проволочной арматуры значительно улучшают сцепление с бетоном.

4) по способу применения - напрягаемая и ненапрягаемая арматура.

13. Механические свойства арматурных сталей

Характеристики прочности и деформаций арматурных сталей устанавливают по диаграмме напряжения - деформации. Горячекатанная арматурная сталь, имеющая на диаграмме площадку текучести, обладает значительным удлинением после разрыва - до 25% (мягкая сталь). Напряжение, при котором деформации развиваются без заметного увеличения нагрузки, называется физическим пределом текучести арматурной стали, напряжение, предшествующее разрыву, носит название временного сопротивления арматурной стали. Повышение прочности горячекатаной стали и уменьшение удлинения при разрыве достигается введением в ее состав углерода и различных легирующих добавок. Существенного повышения прочности горячекатаной арматурной стали достигают термическим упрочнением или холодным деформированием.

14. Классификация арматуры.

Стержневая горячекатанная арматура в зависимости от ее основных механических характеристик подразделяется на 6 классов с условным обозначением A-I, A-II, A-III, A-IV, A-V, A-VI. Термическому упрочнению подвергают арматуру 4-х классов - Aт-III и выше. Дополнительной буквой С указывается на возможность стыкования сваркой; буква К указывает на повышенную коррозионную стойкость. Подвергнутая вытяжке в холодном состоянии стержневая арматура класса А-III, отмечается дополнительным индексом В.

Стержневая арматура всех классов имеет периодический профиль за исключением гладкой арматуры класса А-I.

Физический предел текучести 230 - 400 МПа имеет арматура классов A-I, A-II, A-III, условный предел текучести 600 - 1000 МПа - высоколегированная арматура классов A-IV, A-V, A-VI и термически упрочненная арматура.

Относительное удлинение после разрыва зависит от класса арматуры. Значительным удлинением обладает арматура классов А-II, A-III (14 -19%), сравнительно небольшим удлинением - арматура классов A-IV, A-V, A-VI и термически упрочненная арматура всех классов (6 - 8%).

Арматурную проволоку диаметром 3 - 8мм подразделяют на два класса: Вр-I - обыкновенная арматурная проволока (холоднотянутая, низкоуглеродистая), предназначенная главным образом для изготовления сеток; B-II, Bp-II - высокопрочная арматурная проволока (многократно волоченная, углеродистая), применяемая в качестве напрягаемой арматуры преднапряженных элементов. Периодический профиль обозначается дополнительным индексом р - Bp-I, Bp-II.

Основная механическая характеристика проволоки - временное сопротивление su, которое возрастает с уменьшением диаметра проволоки. Для обыкновенной арматурной проволоки -su = 550 МПа, для высокопрочной проволоки - su = (1300 – 1900) МПа.

15. Арматурные изделия

Сварные сетки изготавливают по стандарту из обыкновенной арматурной проволоки диаметром 3 ¸ 5мм и арматуры класса A-III диаметром 6 ¸ 10мм. Сетки бывают рулонные и плоские. В рулонных сетках наибольший диаметр продольных рабочих стержней - 7мм. Ширина сетки ограничена размером 3800мм, масса рулона не более 1300кг, Причем длина сетки не более 9м.

Основные параметры стандартных сеток в маркировке D-v , d-u

где D, d - диаметры продольных и поперечных стержней,

v, u - шаг продольных и поперечных стержней.

Плоские сварные каркасы изготавливают из одного или двух продольных рабочих стержней и привариваемых к ним поперечных стержней. Концевые выпуски продольных и поперечных стержней должны быть не менее 0.5D+d или 0.5d+D и не менее 20мм.

Пространственные каркасы образуют из плоских, в ряде случаев применяя соединительные стержни.

16. Значительное распространение в настоящее время получают так называемые предварительно-напряженные железобетонные конструкции. В этих конструкциях арматура, натянутая до начала работы элемента под нагрузкой, стремится сжаться и передает при этом часть сжимающих усилий окружающему бетону. Поэтому прежде чем бетон в предварительно-напряженной конструкции, воспринимая расчетную нагрузку, начнет работать на растяжение, в нем должно быть погашено предварительно созданное сжатие. Таким образом, наличие предварительного напряжения позволяет увеличить нагрузку на конструкцию, по сравнению с конструкцией, армированной обычным способом, или при прежней величине нагрузки уменьшить размеры конструкции, т. е. достичь экономии бетона и стали. Следует отметить, что впервые идея предварительного напряжения (обжатия) элементов, работающих на растяжение, была предложена в 1861 г. русским ученым-артиллеристом, акад. А. В. Гадолиным.

Преимущества предварительно-напряженных железобетонных конструкций перед обычными следующие:

1. При работе на изгиб под нагрузкой в элементах конструкций из обычного железобетона, например в балках (см. рис. 32), прочность бетона используется не в полной степени, так как в зоне растяжения он почти не работает, а передача усилий осуществляется одной арматурой.

В балке с предварительно-напряженной арматурой способность бетона хорошо работать на сжатие используется во всем сечении. Это позволяет уменьшать сечения, а следовательно, объем и вес предварительно-напряженных элементов и сократить расход материалов, в частности цемента.

2. Благодаря лучшему использованию свойств арматурной стали в предварительно-напряженных конструкциях по сравнению с обычными сокращается расход арматуры. Это сокращение особенно эффективно при применении для арматуры сталей с высоким пределом прочности.

3. Конструкции с предварительно-напряженной арматурой (напряженно-армированные) обладают повышенной трещино-устойчивостью, что, помимо предохранения арматуры от ржавления, важно для сооружений, находящихся под постоянным давлением воды или каких-либо других жидкостей и газа (трубы, плотины, резервуары и т. п.).

4. Вследствие уменьшения объема и веса напряженно-армированных железобетонных элементов облегчается применение сборных конструкций и увеличивается величина пролетов, которые целесообразно ими перекрывать.

В качестве арматуры предварительно-напряженных железобетонных конструкций наиболее часто применяют проволоку диаметром 3—5 мм, но может быть применена и круглая арматура других диаметров, а также стержни периодического профиля.

17. Анкеровка ненапрягаемой арматуры

Арматурные стержни периодического профиля, а также стержни гладкого профиля в сварных сетках и каркасах допускается применять без крюков на концах.

Растянутые рабочие стержни арматуры гладкого профиля, а также гладкие рабочие стержни в вязаных сетках и каркасах должны иметь на концах полукруглые крюки с внутренним диаметром не менее 2,5 диаметра стержня и длиной прямолинейного участка после отгиба не менее трех диаметров стержня.

В изгибаемых разрезных балках и в плитных конструкциях толщиной белее 30 см концы растянутых стержней при обрыве их по эпюре моментов следует, как правило, анкеровать в сжатой зоне бетона, определяемой в расчетах на трещиностойкость.

Гладкие стержни, заводимые посредством отгибов в сжатую зону, следует заканчивать прямыми крюками, имеющими после загиба прямые участки длиной не менее трех диаметров арматуры.

Для арматуры периодического профиля и при сварных соединениях допускается для автодорожных и городских мостов заделка стержней в растянутой зоне бетона изгибаемых и внецентренно сжатых элементов на длину не менее 30 диаметров стержней за местом их теоретического обрыва. Кроме этого, в пролетных строениях концы заанкериваемых стержней должны быть приварены к смежным стержням на длине не менее 4d швом толщиной не менее 4 мм.

Начало отгибов продольных растянутых стержней арматуры периодического профиля в изгибаемых элементах или обрыв таких стержней во внецентренно сжатых элементах следует располагать за сечением, в котором стержни учитываются с полным расчетным сопротивлением. Длина заводки стержня за сечения (длина заделки ls) для арматурных сталей классов А-II и Ас-II должна составлять не менее:

22d — при классе бетона В30 и выше;

25d — при классах бетона В20 — В27,5 (d—диаметр стержня).

Для арматурных сталей класса А-III длину заделки ls следует соответственно увеличивать на 5d. При пучке стержней d определяется как диаметр условного стержня с площадью, равной суммарной площади стержней, образующих пучок.

В разрезных балках и на концевых участках неразрезных балок заводимые за ось опорной части растянутые стержни продольной арматуры должны иметь прямые участки длиной не менее 8 диаметров стержня. Кроме того, крайние стержни. примыкающие к боковым поверхностям балки, должны быть отогнуты у торца под углом 90° и продолжены вверх до половины высоты балки.

Необходимо обеспечить расстояние от торца балки до оси опирания, равное не менее 30 см, и до края опорной плиты — не менее 15 см.

Перегибы растянутых стержней продольной арматуры по очертанию входящих углов, образующихся при переломе поверхности элемента, не допускаются. Стержни продольной арматуры, расположенные вдоль плоскостей, образующих угол перелома, должны быть продолжены за точку их пересечения на длину не менее 20 диаметров арматуры

20. Потери преднапряжения в арматуре.

Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие при изготовлении элемента и обжатии бетона, и вторые потери, происходящие после обжатия бетона.

Первые потери

1. Потери от релаксации напряжений в арматуре при натяжении на упоры зависят от епособа натяжения и вида арматуры:

при механическом способе натяжения, МПа: высокопрочной арматурной проволоки и канатов, стержневой арматуры; при электротермическом и электротермомеханическом способах натяжения: высокопрочной арматурной проволоки и канатов, стержневой арматуры.

2. Потери от температурного перепада, т. е. от разности температуры натянутой арматуры и устройств, воспринимающих усилие натяжения при пропаривании или прогреве бетона.

3. Потери от деформации анкеров, расположенных у натяжиых устройств вследствие обжатия шайб, смятия высаженных головок, смещения стержней в зажимах или в захватах при механическом натяжении на упоры.

4. Потери от трения арматуры:

а) о стенки каналов или поверхность конструкции при натяжении на бетон

б) об огибающие приспособления при натяжении на упоры

5. Потери от быстронатекающей ползучести бетона зависят от условий твердения, уровня напряжений и класса бетона; развиваются они при обжатии (и в первые 2—3 ч после обжатия).

Вторые потери

6. Потери от релаксации напряжений в арматуре при натяжении на бетон высокопрочной арматурной проволоки и стержневой арматуры принимаются такими же, как и при натяжении на упоры. 8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения.

7. Потери от ползучести бетона (следствие соответствующего укорочения элемента) зависят от вида бетона, условий твердения, уровня напряжений

8. Потери от смятия бетона под витками спиральной или кольцевой арматуры (при диаметре труб, резервуаров до 3 м)

9. Потери от деформаций обжатия стыков между блоками сборных конструкций.

Для конструкций, эксплуатируемых при влажности воздуха окружающей среды ниже 40 %, потери от усадки и ползучести бетона увеличиваются на 25 %. Для конструкций, эксплуатируемых в районах с сухим жарким климатом, эти потери увеличиваются на 50 %.

21. Три стадии напряженно-деформированного состояния железобетонных элементов. Опыты с различными железобетонными элементами - изгибаемыми, внецентренно растянутыми, внецентренно сжатыми с двузначной эпюрой напряжений – показали, что при постепенном увеличении внешней нагрузки можно наблюдать три характерные стадии напряженно-деформированного состояния (рисунок 5.2): стадия I — до появления трещин в бетоне растянутой зоны, когда напряжения в бетоне меньше временного сопротивления растяжению и растягивающие усилия воспринимаются арматурой и бетоном совместно; стадия II — после появления трещин в бетоне растянутой зоны, когда растягивающие усилия в местах, где образовались трещины, воспринимаются apматypoй и участком бетона над трещиной, а на участках между трещинами - арматурой и бетоном совместно; стадия III — стадия разрушения, характеризующаяся относительно коротким периодом работы элемента, когда напряжения в растянутой стержневой арматуре достигают физического или условного предела текучести в высокопрочной арматурной проволоке – временного сопротивления, а напряжения в бетоне сжатой зоны — временного сопротивления сжатию. В зависимости от степени армирования элемента последовательность разрушения зон – растянутой и сжатой – может изменяться.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]