Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
II_Statisticheskaya_termodinamika.doc
Скачиваний:
31
Добавлен:
10.06.2015
Размер:
461.31 Кб
Скачать

II. Статистическая термодинамика.

Основные понятия

Квазистатический процесс; нулевой постулат феноменологической термодинамики; первый постулат феноменологической термодинамики; второй постулат феноменологической термодинамики; третий постулат феноменологической термодинамики; понятие внутренней энергии; функция состояния; функция процесса; основное термодинамическое равенство; понятие энтропии для изолированной неравновесной системы; понятие локальной неустойчивости фазовых траекторий (траекторий частиц); системы с перемешиванием; обратимый процесс; необратимый процесс; термодинамический потенциал; свободная энергия Гельмгольца; свободная энергия Гиббса; соотношения Максвелла; обобщённые координаты и обобщённые силы; принципы экстремума в термодинамике; принцип Ле-Шателье-Брауна.

Основные знания.

Статистическая интерпретация понятий: внутренняя энергия, работа подсистемы, количество теплоты; обоснование первого начала термодинамики с помощью канонического распределения Гиббса; статистическое обоснование третьего термодинамики; свойства макросистем при ; физический смысл энтропии; условия устойчивости термодинамической системы.

Основные умения.

Самостоятельно работать с рекомендованной литературой; определять понятия из п.1; уметь логично обосновывать с использованием математического аппарата элементы знаний из п.2; по известной статистической сумме (статистическому интегралу) определять внутреннюю энергию системы, свободную энергию Гельмгольца, свободную энергию Гиббса, энтропию, уравнение состояния и т.п.; определять направление эволюции открытой системы при постоянных и, постоянныхи, постоянныхи.

2.1. Постулаты феноменологической термодинамики.

Эти постулаты являются обобщением огромного числа наблюдений над термодинамическими системами.

а) Нулевое начало термодинамики.

При фиксированных внешних условиях термодинамическая система переходит в состояние термодинамического равновесия. (Фактически нулевое начало термодинамики постулирует существование температуры. Состояние термодинамического равновесия – такое состояние, при котором макроскопические параметры системы не изменяются с течением времени и в системе отсутствуют потоки любого типа.)

б) Первое начало термодинамики. (Закон сохранения и превращения энергии.)

(2.1.1)

Бесконечно малое изменение внутренней энергии dU происходит за счёт того, что система поглощает количества тепла и совершает работу. (Если система совершает работу, то, если над системой совершается работа, то. Если система получает количество тепла, то, если отдаёт, то.) Первое начало термодинамики вводит в физику новую физическую величину – внутреннюю энергию.

в) Второе начало термодинамики.

Постулат состоит из двух частей.

1. Для любой равновесной (то есть участвующей в квазистатическом процессе) термодинамической системы существует однозначная функция состояния S, называемая энтропией, её полный дифференциал .

2. Для всякого неравновесного (неквазистатического) процесса, происходящего в термодинамической системе: , где– количество поглощённой системой тепла в этом процессе.

Второе начало имеет несколько различных, но эквивалентных формулировок. Приведём ещё некоторые из них:

1. Невозможно построить периодически действующую машину, которая совершала бы работу за счёт охлаждения некоторого источника тепла без каких-либо иных изменений в природе. (Томсон)

2. Тепло не может самопроизвольно (то есть без компенсации) переходить от тела менее нагретого к более нагретому. (Клаузиус)

3. Невозможно построить вечный двигатель второго рода. (Освальд)

в) Третье начало термодинамики.

Приведём две формулировки:

1. Термодинамический процесс, протекающий при температуре Т, сколь угодно близкой к абсолютному нулю, не сопровождается изменением энтропии S.

2. При энтропия системы также стремится к нулю.

Следует иметь в виду, что в термодинамических системах силы взаимодействия между частицами либо короткодействующие, либо электромагнитные, которые могут экранироваться частицами противоположного знака. Системы для которых существенно гравитационное (неэкранируемое) взаимодействие, являются нетермодинамическими. В качестве примера рассмотрим мысленный эксперимент, предложенный астрофизиком Нарликаром.

Звёзды находятся в равновесии под действием двух сил: гравитационного сжатия и внутреннего давления, производимого направленным изнутри излучением и потоками нейтрино. Это давление зависит от температуры.

Поместим в окрестность холодной звезды горячую. Поток тепла от неё устремится к холодной. Внутреннее давление холодной звезды, получающей энергию, возрастает. Она расширяется и температура её понижается. Поскольку горячая звезда отдаёт энергию, внутреннее давление у неё уменьшается. Это приводит к её гравитационному сжатию и повышению температуры. Таким образом температура горячей звезды ещё больше повышается, холодной – понижается, что противоречит второму началу термодинамики.

Далее с помощью статистической физики, обоснуем законы термодинамики с точки зрения атомно-молекулярных представлений и выясним смысл введённых термодинамических параметров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]