Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Metrologia (1)

.docx
Скачиваний:
22
Добавлен:
02.06.2015
Размер:
166.17 Кб
Скачать

Омметр.

Простейшим омметром является электромеханический омметр с однорамочным измерительным механизмом. Он может быть выполнен по последовательной  или параллельной схемам. Омметр состоит из источника питания, измерительного механизма и переменного резистора. В качестве измерителя И используется однорамочный магнитоэлектрический измерительный механизм с добавочным сопротивлением Rд­

Последовательная схема омметра (рис. 2.3а). Омметры с последовательной схемой используются для измерения сравнительно больших сопротивлений

   I=KI*a,  где КI - постоянная измерительного механизма по току,

 a - угол поворота подвижной части измерительного механизма.

Приравняв формулы (2.11) и (2.12), найдем a:

           При постоянных значениях U, KI, Rб, R­и и Rд угол поворота измерительного механизма a определяется значением измеряемого сопротивления Rx, то есть шкала прибора может быть проградуирована в единицах сопротивления. Из формулы для a следует, что шкала у омметра неравномерная.

При бесконечно большом сопротивлении Rx стрелка прибора не отклоняется, так как ток равен нулю. При нулевом сопротивлении (или замкнутом ключе К) сила тока наибольшая и стрелка отклоняется на всю шкалу. Таким образом, нуль шкалы находится у рассматриваемых омметров справа, что соответствует максимальному углу поворота подвижной части измерительного механизма, так как при Rx=0  угол a максимален

Параллельная схема (рис. 2.3 б).

При замыкании ключа К ток протекает по двум параллельно соединенным участкам: через измерительный механизм и измеряемый резистор Rx. Если резистор Rx отсутствует и замкнут ключ (короткое замыкание выводов измерительного механизма), то весь ток протекает через ключ и стрелка измерительного механизма не отклоняется. Если же в качестве резистора Rx взято бесконечно большое сопротивление (соответствует разомкнутому ключу), то весь ток протекает через измерительный механизм и его стрелка отклоняется на всю шкалу. Таким образом, нуль шкалы у такого типа омметров слева. Для контроля правильности показаний прибора размыкают ключ. В этом случае стрелка должна находиться в крайнем правом положении.

Электродинамические и ферродинамические приборы

Устройство и применение электродинамического прибора. Работа электродинамического прибора основана на взаимодействии двух катушек, обтекаемых электрическим током. Электродинамический измерительный механизм (рис. 326, а) состоит из двух катушек: неподвижной 2 и расположенной внутри нее подвижной 1. Подвижная катушка 1 связана с осью прибора со стрелкой и с двумя спиральными пружинами 4 (или растяжками), которые служат для создания противодействующего момента и подвода тока к подвижной катушке 1. В приборе применяется демпфер 3, аналогичный ранее рассмотренному.

При прохождении по катушкам токов I1 и I2 возникают электродинамические силы F, которые стремятся повернуть подвижную катушку относительно неподвижной на некоторый угол.

Значение вращающего момента М, созданного катушками электродинамического прибора, а следовательно, и угол поворота стрелки ? пропорциональны произведению проходящих по катушкам токов I1 и I2. Поэтому в зависимости от схемы включения катушек прибор может быть использован в качестве амперметра, вольтметра и ваттметра

прибор для измерения мощности в электрич. цепях (в цепях перем. тока — для измерения активной мощности Р=UIcosj, где U — напряжение, I — сила электрич. тока, j — фазовый угол между синусоидально изменяющимися током и напряжением). Схема включения В. в цепь показана на рисунке.

Схема включения ваттметра W: 1 — последовательная цепь (неподвижная катушка); 2 — параллельная цепь (подвижная катушка); 3 — нагрузка. В электродинамич. ваттметре поворот подвижной катушки в магн. поле неподвижной катушки пропорц. измеряемой мощности. Для уменьшения искажающего влияния последовательная цепь должна обладать малым, а параллельная — большим сопротивлением.

Электронно-лучевой осциллограф применяют для наблюдения формы, регистрации и измерения амплитудных и временных параметров электрических сигналов. С помощью осциллографа можно измерить частоту и длительность импульса, длительность фронта сигнала, период его повторения, сдвиг фаз между двумя сигналами, определить функциональную зависимость двух сигналов Y(X). Функциональными блоками осциллографа с ЭЛТ (рис. 1) являются усилители вертикального и горизонтального отклонения (УВО и УГО), генератор развертки (ГР) и блок питания (БП). ЭЛТ с электростатической фокусировкой луча и последующим отклонением его в электрическом поле состоит из хорошо откачанной стеклянной колбы, внутри которой находятся электронная пушка (ЭП), отклоняющая система (ОС) и люминесцентный экран (ЛЭ). Электронная пушка предназначена для формирования узкого пучка электронов и его фокусировки на экран

«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ), рис.2.

Рис. 2. Устройство электронно-лучевой трубки с электростатическим управлением.

ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка. Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси – пропорционально исследуемому напряжению.

На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (рис. 3). Отрицательное напряжение отклоняет луч влево, а положительное – вправо (если смотреть со стороны

экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки.

Рис. 3. Форма напряжения развертки.

Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном – вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой.

Для получения осциллограммы исследуемого сигнала необходимо управлять движением светового пятна на экране ЭЛТ в горизонтальном и вертикальном направлениях. Смещение пятна в вертикальном направлении осуществляется сигналом, а в горизонтальном – напряжением развертки. Генератор развертки вырабатывает колебания пилообразной формы, показанные на рис. 1.4.Рис. 1.4. Сигнал на выходе генератора развертки

 На участке ас графика Ux(t) напряжение развертки линейно убывает. Время Тпр, в течение которого Uх изменяется от максимального значения до минимального, называется временем прямого хода развертки. Участок cd, который длится в течение времени Тобр, соответствует обратному ходу развертки. Время Тпр  и Тобр  составляет период развертки Тр.

Через вход «Х» на горизонтально отклоняющие пластины можно подать любой сигнал. Если 2 сигнала синусоидальной частоты равны и кратны то на экране наблюдаются фигуры ЛИССАЖУ. По ним можно определить частоту. Получив на экране эллипс. Это означает что f(x)= частоте сигнала подаваемого с эталонного енератора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]