Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ТОЭ 3ч.doc
Скачиваний:
446
Добавлен:
02.06.2015
Размер:
10.65 Mб
Скачать

Силовые и эквипотенциальные линии

Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий.

Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке.

Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя.

Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ().

Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями.

Эквипотенциальные линии являются замкнутыми сами на себя.

Силовые линии и эквипотенциальные линии пересекаются под прямым углом.

Рассмотрим эквипотенциальную поверхность:

(так как точки лежат на эквипотенциальной поверхности).

– скалярное произведение

Линии напряженности электростатического поля пронизывают эквипотенциальную поверхность под углом 900, тогда угол между векторами равен 90 градусам, а их скалярное произведение равно 0.

Тогда:

Уравнение эквипотенциальной линии

Рассмотрим силовую линию:

Напряженность электростатического поля направлена по касательной к силовой линии (см. определение силовой линии), также направлен и элемент пути, поэтому угол между этими двумя векторами равен нулю.

Тогда:

или

Уравнение силовой линии

Градиент потенциала

Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.

Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.

Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.

В определении градиента существенны два положения:

  1. Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.

  2. Направление таково, что скалярная функция в этом направлении возрастает.

Для декартовой системы координат:

Скорость изменения потенциала в направлении оси Х, Y, Z:

; ;

Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х, взятой с обратным знаком. Аналогично для осей Y и Z.

; ;.

В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид:

.

А в сферической системе координат:

.

Дифференциальный оператор Гамильтона (оператор Набла)

Для сокращения записи операций над скалярными и векторными величинами употребляют дифференциальный оператор Гамильтона или оператор Набла:

Под дифференциальным оператором Гамильтона понимают сумму частных производных по 3-м координатным осям, умноженных на соответствующие единичные векторы (орты).

Применим оператор Гамильтона к потенциалу:

Правые части одинаковы, значит, будут одинаковы и левые части:

Оператор Гамильтона сочетает в себе как векторные, так и скалярные свойства и может быть применен к скалярным и векторным функциям.