Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
93_Ян Гора Лесси - Ядерное электричество.doc
Скачиваний:
62
Добавлен:
26.08.2013
Размер:
1.78 Mб
Скачать

Фото (foto2.Jpg)

Современные заводы используют высокооборотные центрифуги для разделения молекул, содержащих изотопы урана-235 и урана-238

Фото (foto6.Jpg)

Обогатительная фабрика Трикастин во Франции (позади градирен). Четыре ядерных реактора (на переднем плане) производят более чем 3000 МВт электроэнергии, необходимой для работы этой фабрики.

Канадские реакторы CANDU (CANadian Deuterium Uranium) хотя и имеют различные конструкции, но все они работают на естественном (то есть необогащенном) уране. Вместо одной большой емкости высокого давления, содержащей ядро реактора, они имеют большое количество (от 300 до 600) горизонтальных напорных труб, каждая из которых содержит топливо и теплоноситель в виде тяжелой воды. Напорные трубы проходят сквозь специальный корпус (так называемую "каландрию"), который наполнен тяжелой водой для управления параметрами реактора*. Топливные сборки для реакторов CANDU имеют размеры 10 см в диаметре и 50 см в длину.

* Тяжелая вода, или окись дейтерия, содержит дейтерий, который является изотопом водорода, и имеет один дополнительный нейтрон в ядре.

Во всех типах действующих реакторов цепная реакция деления происходит в топливных стержнях, как это описано в 3.1. Быстрые нейтроны замедляются водой, тяжелой водой или графитовыми стержнями так, чтобы они могли инициировать реакцию расщепления. Скорость реакции регулируется введением в ядро реактора стержней, поглощающих нейтроны. Теплота, выделяющаяся при реакции деления, уносится теплоносителем, преобразовывается в пар, который в свою очередь используется для вращения турбины и производства электроэнергии.

В легко-водном реакторе топливо остается в реакторе приблизительно в течение трех лет. Кроме теплоты, выделяемой при реакции расщепления U-235, реактор производит расщепляющийся плутоний (Pu-239), который накапливается в топливных элементах. По истечению примерно трех лет, содержание продуктов деления и других материалов, поглощающих нейтроны, возрастает настолько, что цепная реакция деления замедляется. Отработанные топливные сборки в этом случае удаляют и заменяют новыми. Приблизительно одну третью часть топлива заменяют каждый год. В реакторах типа CANDU заправка свежего топлива осуществляется примерно каждые 18 месяцев.

После удаления из реактора, отработанное ядерное топливо (ОЯТ) сохраняет радиоактивность и выделяет тепло. Поэтому в течение некоторого времени такое топливо выдерживают в бассейнах под водой для отвода теплоты и защиты от ионизирующего излучения. Следующим шагом может быть переработка отработанного ядерного топлива для закрытия топливного цикла (такие страны как Великобритания, Франция и Япония выбрали такой путь "закрытого топливного цикла"), или окончательное захоронение, как это делается в США, Канаде и Швеции, которые выбрали " открытый топливный цикл ". Хранение отработанного ядерного топлива первоначально осуществляется непосредственно в реакторном отделении. Затем оно может быть перемещено в другое место, например, на специальные склады "сухого хранения".

Более ранние поколения реакторов, например, все еще действующие в Великобритании, используют в качестве топлива металлический уран (а не его окись) и газовое охлаждение. В течение последних лет эти реакторы были модернизированы таким образом, чтобы выдержка топливных элементов в их бассейнах не осуществлялась слишком долго. Все это подробно иллюстрирует диаграмма "закрытого топливного цикла" на Рисунке 11. В закрытом топливном цикле для легко-водных реакторов топливо проходит точно такой же путь. Начиная с урановых рудников и заводов, уран проходит все стадии преобразования и обогащения для изготовления реакторного топлива.

После удаления топлива из реактора, топливные стержни проходят обработку на перерабатывающих заводах, где они дробятся и растворяются в кислоте. После специальной химической обработки из отработанного топлива выделяют два ценных продукта: плутоний и неиспользованный уран. Примерно 3% топлива при этом остается в качестве высокоактивных отходов. После битумирования (или остекловывания) эти высокорадиоактивные материалы подлежат длительному захоронению (см. 5.2-5.3).

Приблизительно 96 % урана, который используется в реакторе, остается в исчерпанном топливе (в реакторе расходуется не более 1% U-235). Как показано на Рисунке 14 оставшаяся часть топлива преобразуется в теплоту и радиоактивные продукты распада, а некоторая часть в плутоний и другие актиноиды. Следовательно, переработка отработанного ядерного топлива может иметь некоторые экономические выгоды при восстановлении неиспользованного урана и плутония, который был произведен в реакторе. Это также уменьшает объем высокорадиоактивных и опасных отходов, которые необходимо надлежащим образом хранить, что также имеет определенную экономическую целесообразность.