Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

56 Носовский - Вопросы дозиметрии и радиационная безопасность на АЭС

.pdf
Скачиваний:
321
Добавлен:
26.08.2013
Размер:
8.45 Mб
Скачать

ГЛABA 2

ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Ионизирующим излучением называется любое излучение, взаимодействие которого с веществом приводит к образованию в этом веществе ионов разных знаков.

Ионизирующее излучение способно выбивать электроны из атомов. При этом, видимый свет, ультразвук, ультрафиолетовое, лазерное, Черенковское, микроволновое излучения к ионизирующему излучению не относятся.

Ионизирующее излучение делится на непосредственное и косвенное.

Непосредственное ионизирующее излучение состоит из заряженных частиц, например,

из электронов, протонов, α-частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении, которые выбивают орбитальные электроны из атомов прямо при кулоновском взаимодействии.

Косвенное ионизирующее излучение состоит из незаряженных частиц, например, из нейтронов или фотонов, создающих непосредственно ионизирующее излучение и (или) вызывающих ядерные превращения. Энергия этих частиц передается вначале заряженной частице (электрону или протону), а затем эти вторичные частицы уже производят ионизацию атомов и (или) вызывают ядерные превращения.

Термин "ионизирующее излучение" впервые в 1896 г. ввели Томсон и Резерфорд, описывая свойства рентгеновских лучей.

Кфотонному ионизирующему излучению относятся: γ-излучение, возникающее при из-

менении энергетического состояния атомных ядер, при ядерных превращениях или при аннигиляции частиц; тормозное излучение с непрерывным энергетическим спектром, возникающее при уменьшении кинетической энергии заряженных частиц; характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома; рентгеновское излучение, состоящее из тормозного и (или) характеристического излучений.

Ккорпускулярному излучению относится ионизирующее излучение, состоящее из частиц с массой, отличной от нуля, т.е. α-и β-частицы, нейтроны, протоны, мезоны и др.

Частицы корпускулярного ионизирующего излучения или фотоны принято называть

ионизирующими частицами.

Ионизирующее излучение, состоящее из частиц различного вида или частиц и фото-

нов, называется смешанным ионизирующим излучением.

Различают моноэнергетическое и немоноэнергетическое ионизирующее излучение.

Под моноэнергетическим понимается ионизирующее излучение, состоящее из фотонов одинаковой энергии или частиц одного вида с одинаковой кинетической энергией.

Немоноэнергетическое излучение имеет фотоны разной энергии или частицы одного вида с разной кинетической энергией.

Принято различать первичное и вторичное ионизирующее излучение.

Под первичным понимается ионизирующее излучение, которое в рассматриваемом процессе взаимодействия со средой является или принимается за исходное.

Вторичное ионизирующее излучение возникает в результате взаимодействия первичного ионизирующего излучения с данной средой.

Законы взаимодействия ионизирующего излучения с веществом являются теоретической и практической основой радиационной защиты, на них базируются методы расчета защиты и методы регистрации ионизирующего излучения.

Ионизирующее излучение, в зависимости от массы и заряда, можно подразделить на четыре группы:

•Тяжелые заряженные частицы, к ним относятся α-частицы, протоны и др.

Легкие заряженные частицы: электроны и позитроны.

Фотонное излучение: рентгеновское и γ-излучение.

Нейтронное излучение: нейтроны различных энергий.

Механизм потери энергии

Из заряженных частиц в радиационной защите берут в расчет α- и β-частицы, некоторые мезоны и др. Выше было отмечено, что рентгеновское и γ-излучения относятся к излучению, состоящему из незаряженных частиц и взаимодействуют с веществом посредством механизмов, которые будут рассмотрены позже. Механизм взаимодействия заряженных частиц с поглощающим веществом состоит в том, что частица, пролетая сквозь вещество, "расталкивает" атомные электроны своим кулоновским полем, за счет чего теряет свою энергию, ионизируя либо возбуждая атомы. Основное правило, применяемое ко всем заряженным частицам, это правило, согласно которому они передают свою энергию поглощающему веществу более или менее постоянно на своем пути. Таким образом заряженная частица всегда выходит из поглотителя с меньшей энергией, чем до поглотителя, в отличие от которой γ-квант (незаряженная частица) может пройти толстый защитный экран и на выходе иметь ту же энергию, что и на входе.

При работе специалистов по радиационной защите наибольший практический интерес представляет интервал энергий частиц от нескольких кэВ до 10 МэВ, при этом рассматриваются три основных механизма потери энергии: ионизация, возбуждение и торможение.

Ионизация атомов представляет собой процесс превращения нейтральных атомов среды под действием ионизирующего излучения в заряженные частицы — электроны и ионы, т.е. образование пары ионов. В этом процессе из нейтрального атома выбиваются электроны и он становится ионом. Комбинация выбитого электрона и ионизированного атома называется ионной парой. В различных материалах на образование ионной пары необходима энергия 30 — 40 эВ. Эта энергия называется энергией образования пары ионов ε. Для образования одной пары ионов в воздухе γ-излучение в среднем расходует энергию ε = 33,85 эВ на пару.

Для количественной оценки ионизации атомов вводят понятия полной ионизации и линейной плотности ионизации.

Полная ионизация Nn — это количество пар ионов, образованных ионизирующим излучением, на всем пути в среде:

Nn = Ε/ε,

(2.1)

где E — энергия ионизирующего излучения, эВ;

ε — энергия образования пары ионов, эВ/на пару.

Линейная плотность ионизации NL (удельная ионизация) — это количество пар ионов, образованных ионизирующим излучением на единице пути:

NL = N/R = E/sR,

(2.2)

где Nn — полная ионизация пар ионов; R — линейный пробег.

Возбуждение атомов — это механизм потери энергии, являющийся следствием кулоновского взаимодействия между заряженной частицей и электронами атома. Если при ионизации удаление электронов с орбиты происходит путем их выбивания из нейтрального атома, то при возбуждении электрону передается энергия, недостаточная для его выбивания, в результате чего электрон переходит на более высокий энергетический уровень, при этом он удерживается атомом и нейтральность атома не нарушается. Этот процесс не ведет к образованию ионных пар и к появлению свободных зарядов в веществе. При переходе электрона на прежнюю орбиту испускается характеристическое излучение, энергия которого зависит от глубины перехода орбитального электрона. На каждую образованную пару ионов при ионизации атома приходится примерно два-три возбужденных атома. Потери энергии при ионизации и возбуждении атомов называются ионизационными потерями.

Торможение частиц в поле ядра. Потери энергии ионизирующего излучения в поле ядра называют радиационными потерями, они представляют из себя уменьшение энергии в результате торможения заряженной частицы в поле ядра поглотителя и связаны с испусканием тормозного излучения. Заряженные частицы, пролетая вблизи ядра атомов поглотителя, тормозятся в поле ядра и меняют направление своего движения. Причина возникновения тормозного излучения—это та же кулоновская сила, которая отклоняет заряженную частицу, изменяя направление ее движения. В физическом смысле изменение направления является замедлением т.к. меняется направление вектора скорости и уменьшается величина скорости из-за потери энергии. Тормозное излучение является фотонным излучением с непрерывным спектром, энергетический диапазон которого входит в диапазон рентгеновских лучей. Тормозное излучение возникает в рентгеновских трубках, в ускорителях электронов и др. Анализ процесса потери энергии на тормозное излучение показывает, что эти потери прямо пропорциональны энергии заряженной частицы и квадрату атомного номера поглотителя, и обратно пропорциональны квадрату массы заряженной частицы. Например, потери энергии протона примерно в 20002 раз меньше потерь энергии электрона.

В случае, когда поглощающим веществом является человеческое тело, на ионизацию и возбуждение приходится 99% поглощенной энергии, в то время, как на тормозное излучение 1% энергии.

Описанные механизмы схематически показаны на рис.2.1.

Рис 2.1. Механизмы потери энергии заряженными частицами

Тормозная способность

Тормозная способность S — это средняя энергия, теряемая заряженной частицей на единице своего пути, измеряется в единицах кэВ/мкм. Тормозная способность является свойством поглощающего вещества и показывает насколько теряется энергия заряженной частицей в поглотителе.

Чем больше S, тем лучше действует материал в качестве защиты.

Так как ионизационные и радиационные потери зависят от кулоновских сил, то S прямо пропорциональна заряду взаимодействующих частиц и обратно пропорциональна квадрату расстояния между ними, т.е. S зависит от заряда и атомного номера Z поглотителя, а фактор обратного квадрата расстояния учитывается по среднему расстоянию между атомами поглотителя. Отсюда следует зависимость S от плотности вещНизкоэнергетическиества поглотителя. (медленные) частицы в большей степени подвержены влиянию кулоновских сил, соответственно и потери энергии у них будут большими, поэтому S растет при уменьшении энергии частиц. Изменения величины S в зависимости от энергии, заряда частиц и атомного номера поглотителя показаны на рис. 2.2. У α-частиц (Z=2) S больше, чем у β-частиц (Z=1), а для свинца (Z=82) S больше, чем для алюминия (Z= 13) при данной энергии. Так как S зависит от плотности ρ поглощающего вещества, то в практических целях пользуются массовой тормозной способностью, т.е. тормозной способностью на единицу плотности S/r. Тогда, например, ледяная вода и пар будут иметь одинаковое значение S/r. Численные же значения S для этих веществ будут различными, хотя химический состав их идентичен.

Рис. 2.2. Зависимость тормозной способности от энергии частиц.

Пробег заряженных частиц

Линейный пробег R — это путь, пройденный заряженной частицей до полной потери кинетической энергии, или минимальная толщина поглотителя, необходимая для полного поглощения ионизирующего излучения. Понятие пробега относится только к заряженным частицам, фотонное излучение пробега не имеет.

Если тормозная способность большая, то частица будет замедляться быстрее и, отсюда, пробег будет малым, таким образом, пробег обратно пропорционален тормозной способности.

Пробег зависит от факторов Кулоновского взаимодействия— зарядов взаимодействующих частиц, плотности вещества-поглотителя и энергии заряженной частицы. Пробег увеличивается с ростом энергии излучения, пропорционален массе частицы и обратно пропорционален квадрату ее заряда.

Кривые зависимости пробега от энергии для некоторых заряженных частиц показаны на рис.2.3. Эти кривые являются "зеркальным отражением" кривых зависимости тормозной способности от энергии (рис.2.2).

Рис. 2.3 Зависимость пробега от энергии.

Массовый пробег Rm—это пробег заряженной частицы в единицах массы, являющийся произведением линейного пробега R заряженной частицы в данном веществе на плотность этого вещества ρ:

Rm =Rρ,

(2.3)

где Rm — массовый пробег, г/см2; R — линейный пробег, см; ρ — плотность поглотителя, г/см3.

Если линейный пробег заряженных частиц в веществе зависит от его плотности, то массовый пробег становится независимым от плотности вещества поглотителя, поэтому толщину поглотителя удобнее определять через массовый пробег, ибо для частиц с одинаковой энергией в различных веществах поглотителя он имеет примерно одно и то же числовое значение.

Линейная передача энергии

Линейная передача энергии (ЛПЭ) заряженных частиц в поглощающем веществе (или L) — отношение средней энергии dE, переданной поглощающему веществу движущейся заряженной частицей вследствие столкновений при перемещении ее на расстояние dl, к этому расстоянию:

L = dE/dl.

(2.4)

Термин ЛПЭ тесно связан с тормозной способностью S. Основное отличие заключается в том, что ЛПЭ связано с энергией, передаваемой поглощающему веществу, в то время

как S характеризует свойство поглощающего вещества, показывая насколько эффективно теряет энергию заряженная частица в веществе, т.е. насколько эффективно поглотитель отбирает энергию у заряженной частицы.

ЛПЭ имеет важное значение в радиационной защите, так как с ее использованием вычисляется коэффициент качества данного радиационного поля.

ЛПЭ, как и тормозная способность S, измеряется в кэВ/мкм.

ВЗАИМОДЕЙСТВИЕ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ С ВЕЩЕСТВОМ

Взаимодействие заряженных частиц разделяют на упругие и неупругие.

К упругим относят такие взаимодействия, при которых сумма кинетических энергий взаимодействующих частиц до взаимодействия и после сохраняется неизменной. Таким процессом является упругое рассеяние.

При неупругом взаимодействии часть кинетической энергии заряженной частицы передается образовавшимся частицам или фотонам; другая часть кинетической энергии передается атому или ядру на их возбуждение или перестройку. К таким взаимодействиям относится неупругое рассеяние, ионизация и возбуждение атомов, образование тормозного излучения.

Взаимодействие тяжелых заряженных частиц с веществом рассмотрим на примере α- частиц. α-Частица — это ядро атома гелия, она имеет двойной положительный заряд и четыре единицы массы. Масса α-частицы равна 4,002777 а.е.м. Распад, в основном, претерпевают радионуклиды тяжелых элементов. Энергия α-частиц (Eα), испускаемых естествен-

ными и искусственными радионуклидами, колеблется в пределах 4,0 — 9,0 МэВ. Так, у 239Pu Еα = 5,15 МэВ, у 210Po — 5,3 МэВ, у 226Ra — 4,777 МэВ. Скорость движения α-частиц

порядка 109 см/сек.

При прохождении через вещество энергия α-частицы, в основном, расходуется на ионизацию и возбуждение атомов поглощающей среды (ионизационные потери), которые при Еα>0,1 МэВ можно выразить формулой:

dEα

 

=

4πe4 z2 ZnB

 

 

 

 

 

(2-5)

dx

m V 2

 

 

 

 

 

 

 

 

0

 

где Eα — кинетическая энергия α-частицы; е — заряд электрона; z — заряд α-частицы; Z — порядковый номер поглотителя; n — число атомов в 1 см3 вещества; В — коэф-

фициент торможения; mо — масса покоя электрона; V — скорость частицы.

Одним из наиболее характерных свойств α-частиц является наличие у них определенного пробега. Средний пробег Ra моноэнергетических α-частиц обычно рассчитывают по эмпирическим формулам. В воздухе при нормальных условиях

Rα = aEαn

(2.6)

где Rα — пробег, см; Eαn — кинетическая энергия α-частиц, МэВ;

n — безразмерный коэффициент, установленный эмпирическим путем.

Для α-частиц, испускаемых естественными α-излучателями (1 < Еα <9МэВ), а = 0,318, n = 1,5. Для α-частиц с более высокими энергиями (Еα = ≤200 МэВ) а = 0,148, n = 1,8.

Так, α-частицы с энергией Eα = 5 МэВ пробегают в воздухе расстояние 3,52 см, а с энергией Еα= 30 МэВ — 68см.

Длина пробега α-частицы в других средах может быть определена по формуле Брегга:

Rα =

 

AEα3

мкм,

(2.7)

 

ρ

 

 

 

 

или по формуле Глессена:

 

 

 

 

Rα =

A

Eα3

мкм,

(2.8)

ρ3

Z 2

 

 

 

где Еα — энергия α-частицы, МэВ; А — атомный вес; Z — порядковый номер; ρ — плотность вещества поглотителя, г/см3.

К концу пробега энергия α-частицы уменьшается настолько, что она уже не способна производить ионизацию и, присоединив к себе два электрона, превращается в атом гелия. Полная ионизация для α-частиц составляет несколько сот тысяч пар ионов. Например, α- частица с энергией 7 МэВ, согласно (2.1), образует

N

n

=

E

=

7 106 эВ

= 2 105 пар ионов.

ε

33,85эВ/пару

 

 

 

 

Чем больше энергия α-частицы, тем больше ее пробег и больше образованных пар ионов.

Линейная плотность ионизации также зависит от энергии α-частицы, но зависимость обратная — чем меньше энергия частицы, а следовательно и скорость, тем больше вероят-

ность взаимодействия ее с орбитальными электронами. Линейную плотность ионизации воздуха α-частицей, например, для 210Po (Еα = 5,3 МэВ, линейный пробег R = 3,87 см, энер-

гия образования пары ионов ε = 33,85 эв/пару) определим по формуле (2.2)

N

L

=

E

=

5,3 106

4 104 пар ионов/см.

ε R

33,85 3,87

 

 

 

 

Максимального значения удельная ионизация достигает в конце пробега.

Линейная плотность ионизации воздуха вдоль пробега α-частицы показана на рис.2.4. Из рисунка видно, что линейная плотность ионизации распределяется неравномерно, возрастает к концу пути, а затем резко падает до нуля. Например, α-частица с энергией 4,8 МэВ в воздухе вначале пути образует 2·104 пар ионов/см, а в конце пути 6·104 пар ионов/см. Увеличение плотности ионизации в конце пути с последующим резким уменьшением до нуля объясняется тем, что α-частица, испытывая торможение, по мере движения в веществе теряет свою скорость; следовательно, увеличиваются время прохождения ее через атом в конце пути и, соответственно, вероятность передачи электрону энергии, достаточной для его вырывания из атома. Когда же скорость α-частицы становится

сравнимой со скоростью движения атомов вещества, то α-частица захватывает и удерживает сначала один, а затем и второй электрон и превращается в атом гелия — ионизация прекращается.

Рис. 2.4. Линейная плотность ионизации воздуха вдоль пробега α-частицы.

α-Частицы с одинаковой энергией (моноэнергетические) в поглотителе проходят практически одно и то же расстояние, т.е. число α-частиц почти на всем пути пробега постоянно и резко падает до нуля в конце пробега. Спектр распределения пробегов моноэнергетических α-частиц показан на рис.2.5. Дифференцируя интегральную кривую, можно получить кривую распределения пробегов α-частиц около среднего значения R0- среднего пробега α-частиц.

Пробег α-частиц практически прямолинеен из-за их большой массы, которая препятствует отклонению α-частицы от прямолинейного пути под действием электрических сил атома. Несмотря на высокие значения энергий α-частиц, их проникающая способность и пробег крайне малы, например в воздухе 4·10 см, а в мягких тканях человека, в жидких и твердых веществах будет составлять несколько микрон.

Рис. 2.5. Спектр распределения пробегов моноэнергетических α-частиц: 1 — интегральный; 2 — дифференциальный.

Максимальный пробег α-частиц в воздухе при изменении энергии от 1 до 10 МэВ меняется от 0,52 до 10,5 см и при Еα = 5 МэВ составляет 3.52 см, а в биологической ткани меняется от 7,2· 10-1 до 1,2· 10-2 см, при Еα = 5 МэВ Rmax = 4,4· 10-3 см.

ВЗАИМОДЕЙСТВИЕ ЛЕГКИХ ЗАРЯЖЕННЫХ ЧАСТИЦ С ВЕЩЕСТВОМ

Взаимодействие легких заряженных частиц с веществом рассмотрим на примере β- частиц. β-Частицы представляют собой поток электронов или позитронов. Электрон и позитрон

имеют одинаковую массу и одинаковый заряд, но различаются знаком заряда. Масса электрона равна 0,000549 а.е.м. В отличие от α-частиц, β-частицы имеют сплошной, непрерывный, энергетический спектр.

В зависимости от энергии β-частиц различают мягкое и жесткое β-излучение. β- Частицы, имеющие энергию до нескольких десятков кэВ, называют мягким β-излучением, а имеющие большую энергию — жестким β-излучением.

Процесс прохождения β-частиц через вещество более сложный, чем процесс прохождения α-частиц. Энергия расходуется на ионизационные и радиационные потери, на рассеяние β-частиц. Ядерные реакции протекают только при больших (более 20 МэВ) энергиях электронов.

Ионизационные потери β-частиц, так же как и для α-частиц, связаны с ионизацией и возбуждением атомов поглотителя, но вероятность взаимодействия β-частиц с веществом меньше, чем для α-частиц, так как β-частицы имеют в два раза меньший заряд и во много раз меньшую массу (в 7000 раз) по сравнению с α-частицами. При ионизации β-частицы выбивают орбитальные электроны, которые могут производить дополнительную (вторичную) ионизацию. Полная ионизация представляет собой сумму первичной и вторичной ионизации. На 1 мкм пути в веществе β-частица создает несколько сот пар ионов. Замедленный электрон останется свободным или захватится атомом и окажется в связанном состоянии, а позитрон аннигилирует.

Ионизационные потери зависят от числа электронов в атомах поглотителя. Число электронов в 1 см3 вещества можно вычислить из соотношения

n = ρ·ΝΑ·(Ζ/Α) = 6,023·1023·ρ·(Ζ/Α),

(2.9)

где ΝΑ — число Авогадро; А — атомный вес; ρ — плотность поглотителя; Z — атомный номер элемента поглотителя.

Следовательно ионизационные потери (dЕ/dх)ион ≈ ρ·Ζ/Α.

При изменении Z отношение Z/A изменяется от 0,5 для легких веществ до 0,4 для свинца, т.е. для различных элементов отношение Z/A изменяется незначительно (за исключением водорода, у которого Z/A = 1), что позволяет считать это отношение приблизительно постоянным. Поэтому, выражая измеряемую толщину поглощающего слоя не в сантиметрах, а в единицах ρ·см, т.е. в г/см2, можно заключить, что величина поглощения β- излучения данной энергии будет приблизительно одинаковой для всех веществ.

β-Частицы, пролетая вблизи ядра атомов поглотителя, тормозятся в поле ядра и меняют направление своего движения. Уменьшение энергии в результате торможения электрона в поле ядра поглотителя (радиационные потери) связано с испусканием тормозного излучения.

Для β-частиц больших энергий (несколько МэВ) отношение радиационных потерь к ионизационным определяется выражением

n = (dE/dx)рад/(dE/dx)ион = Еβmах ·Ζ/800,

(2.10)

где Еβmах—максимальная энергия для непрерывного спектра β-частиц или первоначальная энергия моноэнергетических электронов;

Z — атомный номер элемента, в котором происходит торможение электронов.

При определенной энергии β-частиц радиационные потери соизмеримы с ионизационными. Эта энергия называется критической. При равенстве радиационных и ионизационных потерь критическая энергия (E0, МэВ) определяется выражением

E0= 800/Z.

(2.11)

Например, для свинца (Z = 82) критическая энергия E0 = 800/82 ≈ 10 МэВ.

Так как масса β-частиц невелика, то для них характерен эффект рассеяния. Рассеяние β- частиц происходит при соударениях с орбитальными электронами атомов вещества поглотителя. При рассеянии энергия β-частицы теряется большими порциями, в отдельных случаях до половины. Рассеяние зависит от энергии β-частиц и от природы вещества поглотителя: с уменьшением энергии β-частиц и с увеличением атомного номера вещества поглотителя рассеяние увеличивается.

В результате рассеяния в поглотителе путь β-частиц не является прямолинейным, как для α-частиц, и истинная длина пути в поглотителе может в 1,5 — 4 раза превосходить их пробег. Слой вещества, равный длине пробега β-частиц, имеющих максимальную энергию, полностью затормозит β-частицы, испускаемые данным радионуклидом.

Поглощение β-частиц со сплошным спектром происходит по экспоненциальному закону. Это объясняется тем, что β-частицы различной энергии полностью поглощаются различными слоями поглотителя:

φ = φ0ехр(- µd),

(2.12)

где φο — первоначальная плотность потока β-частиц; φ — плотность потока β-частиц после прохождения поглотителя толщиной d; µ—линейный коэффициент ослабления, указывающий долю β-частиц, поглощенных в единице толщины поглотителя.

Одним из наиболее характерных свойств β-частиц, как и α-частиц, является наличие у них определенного пробега в поглощающем веществе, причем в радиационной защите наиболее часто используются имеющиеся сравнительно надежные и достаточные данные как для максимальной энергии Еβ, так и для максимального пробега Rβ. График зависимости максимального пробега β-частиц от их максимальной энергии для нескольких элементов приведен на рис. 2.6.

Рис. 2.6. График зависимости максимального пробега β-частиц от их максимальной энергии.

Соседние файлы в предмете Атомная физика