Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
METROLOGIYa_Shpory_k_ekz.docx
Скачиваний:
31
Добавлен:
31.05.2015
Размер:
311.93 Кб
Скачать
  1. Роль и место метрологии в производстве и научных исследованиях.

Метрологиянаука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Нет ни одной области практ деят-ти человека, где можно можно обойтись без количест-х оценок объекта, получаемых с помощью измерений.

Изм явл-ся одним из важнейших путей познания природы человека. Они дают количест хар-ку окруж мира, раскрывая человеку действующие в природе закономерности.

Очень важную роль измерения играют в сфере научн деят-ти, где они явл-ся основным источником знаний и средством проверки научных гипотез.

В сфере практ деят-ти изм служат для обеспечения требуемого качества продукции, взаимозаменяемости деталей и узлов, управл технологич процессом, и автатизацией проз-ва, учета матер ресурсов, охраны здоровья и обеспеч безопасности труда.

Научно-технич процесс (НТП) тесно связан с ростом требований к объему и качеству изм. От качества измерит информации зависит качество выпускаемой продукции, эффективность ее производства и использования.

Все это и определяет роль метрологии как научную основу измерений в жизни совр общества.

  1. Метрология как наука, предмет и задачи метрологии.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Первое время метрология представляла собой чисто опис науку о разл мерах и соотношениях между ними. Необх-ть исп мер появилась когда чел начал изготавливать орудия своего труда. Простейшими были естественные меры природного и антропологич хар-ра(шаг, ступня, палка).

Как наука стала форм-ся на рубеже 19-20в. Большую роль в этом сыграл Д.И.Менделеев, кот в 1893г. организовал главную палату мер и весов в России(теперь НИИ Менделеева).

Предмет изучения метрологии – измерения, причем только физ величин.

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств

Важнейшая задача метрологии – обеспеч единства и требуемой точности изм.

Средства метрологии – как технические средства используемые для изм физ величин, так и нормативные документы регламентирующие их рациональное использование.

Методологическая основа метрологии – теор вероятности и мат статистики на чем базируется теория неопред изм(погрешности).

На современном этапе 3 самост направления: теоретическая(фундаментальная), прикладная(практическая), законодательная метрология.

Классифицирующие "измерительные" понятия: близкий, холодный, длинный, старый неточны и неопределенны, хотя позволяют строить классификацию. Попытка классификационной дифференциации: горячий, теплый, холодный; более тонко: обжигающий, горячий, теплый, тепловатый, прохладный, холодный, ледяной играют роль кажущегося уменьшения неопределенности.

Топологические понятия: теплее, чем...; длиннее, чем ...; тверже, чем ...; позднее, чем…, старше, чем ...; позволяют сравнивать как минимум два объекта и располагать их определенном порядке. Применение топологических понятий – переходная ступень от классификационных к метрическим. Топологизация ("выполнение условий упорядочения") – необходимое условие существования любого метрического понятия.

Метрические понятия не только выражают количественную характеристику объекта, но и содержат "точные" количественные определения.

Переход от классифицирующих понятий к метрическим следует четко отличать от попытки (пусть более или менее удачной) количественной оценки какого-либо качественного понятия (балльная оценка мастерства, успех театральной постановки по числу повторения спектаклей или установление соотношения между качественным и квантифицируемым понятиями, например, страх – уровень адреналина в крови).

Объективный переход от классифицирующих понятий к метрическим, реализующийся в случае необходимости изучения объектов, не следует истолковывать ни как сведение качеств к количествам, ни тем более как игнорирование качественных аспектов реальности. Всякое метрическое понятие обязательно включает в себя свое качественное определение.

  1. Актуальные проблемы метрологии.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

В настоящее время вся практическая и теоретическая деятельность в области метрологии направлена на решение следующих основных проблем:

  • совершенствование эталонной базы и повышения точности воспроизведения единиц физических величин. Использование фундаментальных физических констант и атомных характеризующих высокую стабильность в качестве новых более совершенных технологий.

  • совершенствование механизмов передачи размера единиц от эталонов ниже стоящим по метрологическому статусу средствам измерений.

  • расширение диапазона измерений физических величин и распространения точных измерений на области очень больших и очень малых значений физических величин(измерение сверх высоких и сверх низких температур, сверх высокого давления и т.д.)

  • повышения точности измерения в особых нестандартных условиях.

  • развитие фундаментальных основ метрологии.

  • развитие теории неопределённости результатов измерения, оптимизации и планировании измерения.

повышение точности измерения физических величин на основе использования, а также совершенствования методов и средств измерения.

  1. Измерительное преобразование. Линейное измерительное преобразование.

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств (ГОСТ 16263 -70).

Основное уравнение измерения физической величины можно записать в виде Q = Nq, где Q – измеряемая физическая величина; q – единица физической величины; N – числовое значение физической величины, которым определяется соотношение измеряемой физической величины и единицы, использованной при измерениях.

Из уравнения измерения следует, что в основе любого измерения лежит сравнение исследуемой физической величины с аналогичной величиной определенного размера, принятой за единицу. Суть измерения состоит в определении числового значения физической величины - этот процесс иногда называют измерительным преобразованием - можно представить как преобразование (или цепочку преобразований) измеряемой физической величины в иную величину. Конечной целью измерительного преобразования (или преобразования измерительной информации о физической величине) является получение числа, которое определяет отношение измеряемой физической величины к единице этой физической величины.

Линейное измерительное преобразование- при увеличении преобразованной величины Q на Q результат преобразования величина R(увел-ся или уменьш-ся на R) а при увеличении Q в n-раз R так же увели-ся в n-раз и Q и n таковы что Q и Q+n*Q лежат в диапазоне преобразования.

  1. Основные свойства, определяющие качество измерений. Единство, точность и достоверность измерений.

Точность измерений – качество измерений, отражающее близость их результатов к истинному значению измеряемой величины(близость к нулю погрешности результата измерения). Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных. Количественно точность может быть выражена обратной величиной модуля относительной погрешности.

Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Одним из необходимых условий обеспечения единства измерений является единообразие средств измерений.

Под единообразием средств измерений понимают состояние средств измерений, характеризующееся тем, что они проградуированы в узаконенных единицах и их метрологические свойства соответствуют нормам. Единообразие средств измерений есть необходимое, но недостаточное условие соблюдения единства измерений.

"Важнейшей характеристикой качества измерений является их достоверность; она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин."

  1. Основные свойства, определяющие качество измерений. Точность, правильность, сходимость и воспроизводимость измерений.

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств (ГОСТ 16263 -70).

Результат измерений получают с некоторой погрешностью. Для предварительной (качественной) оценки значения и характера погрешности используют такие наиболее общие свойства измерений, как точность, правильность, сходимость и воспроизводимость измерений.

Точность измерений – качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных. Количественно точность может быть выражена обратной величиной модуля относительной погрешности.

Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в их результатах.

Сходимость измерений – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Высокий уровень сходимости измерений соответствует малым значениям случайных погрешностей при многократных измерениях одной и той же физической величины с использованием одной методики выполнения измерений. В качестве упрощенной оценки сходимости может быть использован такой параметр, как размах результатов измерений в некоторой серии. R = Xmax – Xmin.

Воспроизводимость измерений – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в разных местах, разными методами и средствами).

Воспроизводимость измерений можно оценить, например, после выполнения нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений.

Геометрические представления о размахе R результатов измерений можно получить с использованием точечной диаграммы результатов многократных измерений одной и той же физической величины, которая строится в координатной системе "измеренные значения X – номер измерения N" в любом удобном масштабе. Точечная диаграмма в определенных случаях позволяет высказать некоторые суждения и о правильности измерений

  1. Виды измерений. Прямые и косвенные, совокупные и совместные измерения.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Измерение физической величины(измерение величины; измерение) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины( РМГ 29 – 99).

Метод измерений – совокупность приемов использования принципов и средств измерений

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

Прямые измерения - искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением Q = х, где Q – измеряемая величина, х – результат измерения.

Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…), где X, Y, Z,… – результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера)-( нахождение значения угла треугольника по измеренным длинам сторон)

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин, например, длин L1, L2, L3 и т.д.

Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Подразумевают измерение нескольких не одноименных величин (X, Y, Z и т.д.)- нахождения температурного коэффициента линейного расширения.

  1. Виды измерений. Абсолютные и относительные, однократные и многократные.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы. В соответствии с этим принято различать абсолютные и относительные измерения.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы m и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Пример — Измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве эталонной меры активности.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения, причем многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). В зависимости от поставленной цели число повторных измерений может колебаться в пределах 10~100.

Однократное измерение – измерение, выполненное один раз.

Многократное измерение(измерения с многократными наблюдениями) – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

  1. Виды измерений. Статические и динамические измерения.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Статические и динамические измерения наиболее логично рассматривать в зависимости от режима получения средством измерения входного сигнала измерительной информации.

При измерении в статическом (квазистатическом, псевдостатическом) режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи и результаты фиксируются без динамических искажений.

При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение диаметров тел качения (постоянных физических величин) в подшипниковой промышленности осуществляется с использованием контрольно-сортировочных автоматов. При этом скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора.

  1. Виды измерений. Технические и метрологические измерения.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

В зависимости от планируемой точности измерения делят на технические и метрологические. К техническим измерениям следует относить те, которые выполняют с заранее установленной точностью(  [], где [] – допустимая погрешность измерения). Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения( 0).

Общность метрологического подхода ко всем этим видам измерений состоит в том, что при любых измерениях определяют значения ∆ реализуемых погрешностей, без чего невозможна достоверная оценка результатов.

  1. Виды измерений. Равноточные и неравноточные, равнорассеянные и неравнорассеянные измерения.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

По реализованной точности и по степени рассеяния результатов при многократном повторении измерений одной и той же величины различают равноточные и неравноточные, а также на равнорассеянные и неравнорассеянные измерения.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

Оценка равноточности и неравноточности, а также равнорассеянности и неравнорассеянности результатов измерений зависит от выбранных значений предельных мер расхождения точности или оценок рассеяния. Допустимые расхождения оценок устанавливают в зависимости от задачи измерения.

Равноточными называют серии измерений 1 и 2, для которых оценки погрешностей i и j можно считать практически одинаковыми (1 2), а к неравноточным относят измерения с различающимися погрешностями(1 2).

Измерения в двух сериях считают равнорассеянными (10 20), или при (10 20) неравнорассеянными (в зависимости от совпадения или различия оценок случайных составляющих погрешностей измерений сравниваемых серий 1 и 2).

  1. Методы измерений. Метод непосредственной оценки.

Метод измерений – совокупность приемов использования принципов и средств измерений. (ГОСТ 16263 –70)

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.( РМГ 29 -99)

Различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки - значение измеряемой физической величины определяют непосредственно по отсчетному устройству прибора прямого действия. Суть - сравнении измеряемой величины с мерой, принятой за единицу. Прибор осуществляет преобразование входного сигнала измерительной информации, соответствующего всей измеряемой величине, после чего и происходит оценка ее значения.

Формальное выражение для описания метода непосредственной оценки может быть представлено в следующей форме:

Q = х, где Q – измеряемая величина, х – показания средства измерения.

  1. Методы измерений. Метод сравнения с мерой (нулевой и дифференциальный методы, метод совпадения).

Метод измерений – совокупность приемов использования принципов и средств измерений.

Различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод сравнения с мерой - метод измерений, в котором измеряемая величина сравнивается с известной величиной, воспроизводимой мерой.

Принципиальные различия между двумя основными методами измерений заключаются в том, что метод непосредственной оценки реализуется с помощью приборов и не требует дополнительного применения мер, а метод сравнения с мерой предусматривает обязательное использование овеществленной меры. Меры в явном виде воспроизводят с выбранной точностью физическую величину определенного (близкого к измеряемой) размера.

Формально метод сравнения с мерой может быть описан следующим выражением: Q = х + Хм, где Q – измеряемая величина, х – показания средства измерения. Хм – величина, воспроизводимая мерой.

Примерами используемых мер являются гири, концевые меры длины или угла, резисторы и т.д.

Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают:

Дифференциальный метод измерений – метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, что формально соответствует х ≠ 0 в выражении Q = х + Хм.

Нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. (х ≈ 0 в том же выражении Q = х + Хм из чего следует, что Q ≈ Хм ).

Дифференциальный и нулевой методы отличаются друг от друга в зависимости от степени приближения размера, воспроизводимого мерой, к измеряемой величине.

Метод совпадений – метод сравнения с мерой, в котором значение измеряемой величины оценивают, используя совпадение ее с величиной, воспроизводимой мерой (т.е. с фиксированной отметкой на шкале физической величины

  1. Методы измерений. Метод сравнения с мерой (метод противопоставления и метод замещения, метод дополнения).

Метод измерений – совокупность приемов использования принципов и средств измерений.

Различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод сравнения с мерой характеризуется тем, что измеряемая величина сравнивается с известной величиной, воспроизводимой мерой.

В зависимости от одновременности или неодновременности воздействия на прибор сравнения измеряемой величины и величины, воспроизводимой мерой, различают:

Метод замещения – метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой, то есть эти величины воздействуют на прибор последовательно.

Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

  1. Средства измерений. Меры и индикаторы.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

В зависимости от функционального назначения и конструктивного исполнения различают следующие средства измерений:

меры; измерительные преобразователи; измерительные приборы; индикаторы.

Кроме того, основные и вспомогательные средства измерений и дополнительные устройства могут быть объединены в измерительные установки или измерительные системы, рассматриваемые как более сложные средства измерений.

Меры предназначены для хранения и воспроизведения физической величины одного заданного размера (однозначные меры) или ряда размеров (многозначные меры), значения которых выражены в установленных единицах и известны с необходимой точностью. Многозначные меры могут механически объединять несколько однозначных мер (ступенчатая мера длины, многогранная угловая концевая мера с тремя, четырьмя или шестью рабочими углами). Многозначными мерами являются также штриховые меры со шкалой (линейка измерительная, транспортир). Меры могут комплектоваться в наборы (наборы концевых мер длины, наборы разновесов);

Индикатор – техническое средство или вещество, предназначенное для установления наличия какой-либо физической величины или превышения уровня ее порогового значения. (индикатор фазового провода электропроводки, индикатор контакта измерительного наконечника прибора для линейных измерений с поверхностью детали, лакмусовая бумага). В некоторых случаях в качестве индикаторов могут использоваться измерительные приборы (часы-будильник, омметр при проверке обрыва в электрической цепи).

  1. Средства измерений. Измерительные преобразователи и измерительные приборы.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Измерительные преобразователи предназначены для получения сигнала измерительной информации, его преобразования и выдачи в любой форме, удобной для передачи, обработки, хранения или дальнейшего преобразования, но не поддающейся непосредственному восприятию оператором. Различают первичные и промежуточные измерительные преобразователи.

Первичные измерительные преобразователи – первые в измерительной цепи – воспринимают саму измеряемую физическую величину и преобразуют ее в сигнал измерительной информации (терморезистор термометра сопротивления), а промежуточные измерительные преобразователи занимают в измерительной цепи любое место после первичного.

Измерительные приборы предназначены для получения измерительной информации от измеряемой физической величины, ее преобразования и выдачи в форме, поддающейся непосредственному восприятию оператором. По виду выходного сигнала приборы принято делить на аналоговые, у которых выходной сигнал является непрерывной функцией измеряемой величины, и "цифровые" (числовые), имеющие дискретный выходной сигнал, обычно выдаваемый в числовой форме. Различают приборы показывающие и регистрирующие (самопишущие и печатающие).

Общая структура измерительного прибора: чувствительный элемент, первичный измерительный преобразователь, промежуточный измерит. преобразователь, устройство отображения(шкала-указатель, цифровое табло, самопишущее, цифропечатающее или другое регистрирующее устройство).

  1. Средства измерений. Измерительные установки и измерительные системы.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Основные и вспомогательные средства измерений и дополнительные устройства могут быть объединены в измерительные установки или измерительные системы, рассматриваемые как более сложные средства измерений.

Измерительная установка - совокупность функционально объединенных средств измерения и вспомогательных устр-в предназн. для выработки сигналов измерительной информации в форме удобной для непосредственного восприятия оператором и расположенных компактно в одном месте. Создание измерит. установок позволяет наиболее рационально расположить все требуемые ср-ва измерения и соединить их с объектами измерений для обеспечения наиболее высокой производительности труда на данном рабочем месте.

Измерит. система - ср-ва измерения предназн. для выработки сигналов измерит. информации в форме удобной для автоматич. обработки передачи и использования в автоматических системах контроля, управления и регулирования. Их главн. предназначение - это автоматизация процесса измерения и использование рез-тов измерений в данных системах. В случае если разл. эл-ты измерит системы разнесены на значит. расстояние друг по отношению к другу, то связь между ними может осуществляться как по проводным так и беспроводным каналам связи.

  1. Средства измерений. Типовые элементы средств измерений и их основные характеристики.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Очевидно, что и простые и более сложные средства измерений могут включать типовые элементы, к которым можно отнести чувствительный элемент, измерительный механизм, показывающее устройство, регистрирующее устройство, цифровое табло измерительного прибора.

Чувствительный элемент средства измерений (чувствительный элемент) – часть измерительного преобразователя в измерительной цепи, воспринимающая входной измерительный сигнал.

Измерительный механизм средства измерений (измерительный механизм) – совокупность элементов средства измерений, которые обеспечивают необходимое перемещение указателя (стрелки, светового пятна и т. д.).

Определение не вполне соответствует термину, а приведенный далее пример «измерительный механизм милливольтметра состоит из постоянного магнита и подвижной рамки» скорее относится к промежуточному измерительному преобразователю прибора.

Показывающее устройство средства измерений (показывающее устройство) – совокупность элементов средства измерений, которые обеспечивают визуальное восприятие значений измеряемой величины или связанных с ней величин. Очевидно, показывающие устройства приборов чаще всего выполнены в виде системы шкала-указатель или числового табло.

Шкала средства измерений (шкала) – часть показывающего устройства средства измерений, представляющая собой упорядоченный ряд отметок вместе со связанной с ними нумерацией. Отметки на шкалах могут быть нанесены равномерно (равномерная шкала) или неравномерно (неравномерная шкала).

Отметка шкалы (отметка) – знак на шкале средства измерений (черточка, зубец, точка и др.), соответствующий некоторому значению физической величины. Отметку шкалы средства измерений, у которой проставлено число, называют числовая отметка шкалы, а промежуток между двумя соседними отметками шкалы средства измерений называется делением шкалы.

Различают начальное значение шкалы (наименьшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений) и конечное значение шкалы (наибольшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений). Так для медицинского термометра начальным значением шкалы является 34,3 °С, а конечным значением шкалы является 42 °С.

Указатель средства измерений (указатель) – часть показывающего устройства, положение которой относительно отметок шкалы определяет показания средства измерений. Указателем может быть стрелка, штрих, кромка детали, перемещающейся относительно шкалы, световое пятно с маркой, край столбика жидкости и т.д. Изменение показаний в системе шкала-указатель, может осуществляться за счет перемещения любого из элементов относительно другого.

Показывающее устройство «цифрового» измерительного прибора называется табло цифрового измерительного прибора (табло прибора; табло).

Кроме демонстрирующих в метрологии используют также и регистрирующие приборы. Регистрирующее устройство средства измерений (регистрирующее устройство) – совокупность элементов средства измерений, которые регистрируют значение измеряемой или связанной с ней величины. В качестве регистрирующего устройства могут использоваться самописцы, печатающие устройства (символьные, в частности цифропечатающие; матричные, формирующие изображение из точек), устройства с фоторегистрацией или магнитной регистрацией данных и другие.

  1. Средства измерений. Классификация средств измерений по степени участия оператора в процессе измерений, по принципам действия. Деление средств измерений на виды, типы и модификации.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Классификация измерений по степени участия оператора в процессе измерений. В процессе измерений различают автоматические, автоматизированные и неавтоматизированные средства измерений. Автоматические средства измерений – средства измерений, производящие без непосредственного участия человека измерения и все операции, связанные с обработкой результатов, передачей данных или выработкой управляющего сигнала. При использовании таких средств измерений роль оператора сводится только к их техническому обслуживанию. Автоматизированные средства измерений – средства измерений, производящие в автоматическом режиме одну или много измерительных операций.

Ту или иную величину можно измерять при помощи средств измерений, отличающихся одно от другого принципом действия. Различия этих принципов связаны с использованием различных физических явлений. Например, для измерения длины применяют механические, оптические, пневматические и электрические устройства. Кроме того, могут быть различными способы использования одного и того же физического явления. Так, различие принципа действия электроизмерительных устройств, в которых используется взаимодействие электрического тока и магнитного потока, заключается в способе получения, форме и характере магнитного потока.

Тип СИ - совокупность средств измерений одного и того же назначения, основанных на одном и том же принципе действия, имеющих одинаковую конструкцию и изготовленных по одной и той же технической документации.        Примечание - Средства измерений одного типа могут иметь различные модификации (например, отличаться по диапазону измерений

Вид СИ - совокупность средств измерений, предназначенных для измерений данной физической величины.        Примечание - Вид средств измерений может включать несколько их типов.           Пример - Амперметры и вольтметры (вообще) являются видами средств измерений, соответственно, силы электрического тока и напряжения

СИ одного типа могут иметь различные модификации. Пример: индикатор часового типа, отличающийся по диапазонам показаний и имеют модификации ИЧ2, ИЧ 5, ИЧ10.

  1. Средства измерений. Порядок метрологического узаконивания средств измерений. Сандартизованные и нестандартизованные средства измерений. Классификация средств измерений по метрологическому назначению.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По уровню стандартизации СИ подразделяются на :

- стандартизованные

- нестандартизованные (уникальные)

Стандартизованное - средство измерений, изготовленное и применяемое в соответствии с требованиями государственного или отраслевого стандарта.

Серийно выпускаются промышленными предприятиями, в обязательном порядке подвергаются государственным испытаниям и заносятся в Госреестр.

Нестандартизованное - средство измерений, стандартизация требований к которому признана нецелесообразной.

Разрабатываются специализированными научно-исследовательскими организациями. Предназначены для решения специальной измерительной задачи.

Выпускаются единичными экземплярами.

Не проходят государственных испытаний, их характеристики определяются при метрологической аттестации

По метрологическому назначению («метрологической соподчинённости»),

по роли в системе обеспечения единства измерений

СИ подразделяются на 2 группы:

- рабочие и

- метрологические - эталоны (государственные и рабочие)

Рабочее - средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений

Эталон единицы ФВ - Средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

  1. Международная система единиц (СИ). Структура СИ, её достоинства и недостатки.

Ряд единиц физических величин, а также значения числа несистемных единиц приводили к неудобству пересчёта при переходе от одной системы к другой. При этом стал вопрос унификации единиц физических величин.

Рост научно-технических связей и экономических отношений между государствами, обуславливали такую унификацию в международном масштабе.

Исходя из этого в 1954г. X-генеральная конференция по мерам и весам установила 6 осн. единиц: метр, килограмм, секунда, ампер, градус(К), свеча. Одновременно была выделена комиссия ,задачей которой была разработка универсальных значений физических величин. В 1960г. была принята международная система единиц(СИ). На том этапе в систему вошли 6 основных , 2 дополнительных: радион, стерадиан, а также 27 производных единиц. Также в список вошли и приставки для образования дольных и кратных единиц. Список постоянно пополняется . В 1971г. была добавлена 7 величина: количество вещества-‘моль’. У нас единицы физических величин построены на базе системы СИ.

Длина – L – метр, Масса – M – килограмм, Время – T – секунда, Сила электр. тока – I – ампер, Термо-дин температура – Θ – кельвин, Количество вещества – N – моль, Сила света – J - кандела

Кроме базисных основных и производных единиц в SI используют также кратные и дольные единицы, образованные умножением базисной единицы на десять в целой положительной или отрицательной степени.

Задачи, которые решала комиссия при выборе величн:

-Охватить все области науки и техники.

-Использовать традиционные , широко применяемые на практике единицы.

-Выбрать такие единицы, которые бы воспроизводились бы с помощью эталонов с максимальной точностью.

Достоинства СИ:

1.Универсальность(охватывает все области науки, с\х ) 2.Унификация единиц для всех видов измерений(н\р единица давления-Паскаль) 3.Удобные для практики основные и большинство производственных единиц. 4. Когерентность системы, упрощение записи формул, отсутствие в них переводных коэффициентов. 5.Разграничение единицы масс (кг) и силы(Н) 6. Упрощение процесса изучения единиц их применения в с\х и на практике.

Недостатки СИ:

Универсальность (не все универсальные единицы не всегда бывают удобны на практике в некоторых специфических областях науки и техники

  1. Погрешность измерения. Классификация погрешностей измерений по формам выражения.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Классификация погрешностей измерений может осуществляться по разным классификационным признакам:

  • по формам выражения (абсолютные и относительные погрешности),

  • по формам используемых оценок (среднее квадратическое значение, доверительные границы погрешности и др.),

  • по источникам возникновения (например, инструментальные погрешности, субъективные погрешности),

  • по степени интегративности (интегральная погрешность и составляющие погрешности, например инструментальную погрешность можно рассматривать как составляющую интегральной погрешности измерения);

  • по значимости (значимые, пренебрежимо малые),

по характеру проявления или изменения от измерения к измерению (случайные, систематические и грубые),

  • по характеру изменения во времени (статические и динамические).

Поскольку деление погрешностей по источникам их возникновения не является самоцелью, а используется для выявления составляющих, наиболее часто используется и представляется достаточно логичной следующая классификация:

  • погрешности средств измерений (они же "аппаратурные погрешности" или "инструментальные погрешности");

  • методические погрешности или "погрешности метода измерения";

  • погрешности из-за отличия условий измерения от нормальных ("погрешности условий");

  • субъективные погрешности измерения("погрешности оператора", или же "личные" либо "личностные").

Общеприняты и практически непротиворечивы классификации погрешностей измерений по формам их выражения.

Абсолютные погрешности выражают в единицах измеряемой величины, а относительные, которые представляют собой отношение абсолютной погрешности  к значению измеряемой величины, могут быть рассчитаны в неименованных относительных единицах (или в именованных относительных единицах, например в процентах или в промилле). Формальное выражение относительной погрешности (отн ) может быть представлено в виде: отн = /Q, а при использовании именованной относительной погрешности, выраженной в процентах отн = (/Q)  100 %. где  – абсолютная погрешность измерения; Q – истинное значение физической величины. Либо, принимая во внимание незначительное для данного выражения различие между истинным значением физической величины Q и результатом ее измерения X, можно записать отн /X, а также отн (/X) 100 %.

Для характеристики средств измерений иногда используют такой специфический класс относительных погрешностей, как приведенные погрешности (прив), то есть отношение абсолютной погрешности к некоторой нормирующей величине (Qнорм)

прив = /Qнорм, В качестве нормирующей величины могут использоваться верхний предел измерений, либо больший из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений, а верхний и нижний пределы не одинаковы по модулю, и другие величины, оговоренные ГОСТ 8.401-80.

  1. Погрешность измерения. Классификация погрешностей измерений по формам используемых оценок. Качественные характеристики погрешностей.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Более строгими в математическом смысле оценками погрешностей можно считать среднее арифметическое значение погрешности в серии результатов, среднее квадратическое отклонение погрешности от фиксированного значения результата измерения, границы погрешности. В качестве предельных значений или границ могут рассматриваться нижняя и верхняя границы (н и в либо и +), значение  модуля погрешности (в случае если  = +) или значение модуля погрешности, равное большему из абсолютных значений  и +.

Границы погрешности могут быть определены как предельные значения или как доверительные границы с указанием вероятности попадания погрешности в указанный интервал.

  1. Погрешность измерения. Классификация погрешностей измерений по формам используемых оценок. Количественные оценки погрешностей.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Более строгими в математическом смысле оценками погрешностей можно считать среднее арифметическое значение погрешности в серии результатов, среднее квадратическое отклонение погрешности от фиксированного значения результата измерения, границы погрешности. В качестве предельных значений или границ могут рассматриваться нижняя и верхняя границы (Δн и Δв либо –Δ и +Δ), значение Δ модуля погрешности (в случае если |–Δ| = |+Δ|) или значение модуля погрешности, равное большему из абсолютных значений |–Δ| и |+Δ|.

Границы погрешности могут быть определены как предельные значения или как доверительные границы с указанием вероятности попадания погрешности в указанный интервал.

Среднее квадратическое (квадратичное)[1] — число , равное квадратному корню из среднего арифметического квадратов данных чисел:

Доверительная погрешность (доверительные границы погрешности результата измерений)

Наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

По форме количественного выражения погрешности: Абсолютная. Относительная. Приведённая.

Абсолютная погрешность - Погрешность, выраженная в единицах измерения и равная разности измеренного (Х) и действительного (Хд) значения измеряемой величины

Относительная погрешность — Погрешность измерения оценка отклонения величины измеренного значения величины от её истинного значения

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона

  1. Погрешность измерения. Классификация погрешностей измерений по степени интегративности

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

По степени интегративности: интегральная погрешность и составляющие погрешности(например инструментальную погрешность можно рассматривать как составляющую интегральной погрешности измерения);

Погрешность измерения , которая всегда является интегральной погрешностью, образуется в результате объединения составляющих погрешностей от разных источников:

 = си* м *у *оп ,

где * – знак объединения (не сложения), поскольку погрешности разного характера объединяют с использованием разных математических операций.

Каждый из источников может дать одну, либо несколько (в том числе и значительное число) элементарных составляющих. В последнем случае составляющая погрешность интегральной погрешности измерения сама является интегральной. В качестве примеров, иллюстрирующих множество составляющих в одном источнике, можно представить субъективную и инструментальную погрешности.

  1. Погрешность измерения. Классификация погрешностей измерений по значимости.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

По значимости все погрешности (составляющие и интегральные) можно делить на значимые и пренебрежимо малые.

К пренебрежимо малым составляющим погрешностям относят погрешности, которые значительно меньше доминирующих составляющих. Формальное соотношение между пренебрежимо малой min и доминирующей max составляющими можно записать в виде

min << max.

Пожалуй, любую отдельную случайную или систематическую составляющую гарантированно можно отнести к пренебрежимо малым погрешностям, если она на порядок меньше доминирующей составляющей одной и той же интегральной погрешности. Пренебрежимо малые погрешности при объединении всех составляющих i в оценку интегральной погрешности  практически не оказывают влияния на окончательный результат, что формально можно записать как

 = 1* 2 *… *i *… *n  2 *…*i *… *n,

где 1 = min<< max.

Пренебрежимо малой интегральной погрешностью измерения можно считать такую, которая не является препятствием для замены истинного значения физической величины полученным результатом. В соответствии со стандартом за действительное значение физической величины принимают такое значение, которое получено экспериментально (в результате измерений) и настолько близко к истинному, что для данной задачи измерений может заменить истинное ввиду несущественности различия между ними

X дт  Q,

где X дт – действительное значение физической величины;

Q – истинное значение физической величины.

Если различие между истинным значением физической величины Q и результатом ее измерения Xдт мы считаем пренебрежимо малым, можно записать дт  0,

где дт – погрешность измерения действительного значения физической величины.

  1. Погрешность измерения. Классификация погрешностей измерений по характеру изменения во времени (в зависимости от режима измерения).

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

В зависимости от режима измерения во времени погрешности принято делить на статические и динамические.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения(не изменяющейся по размеру ФВ).

Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения(изменяющейся физической величины).

В соответствии с ранее действовавшим стандартом динамической погрешностью средства измерений называлась составляющая погрешности, дополнительная к статической, и возникающая при измерении в динамическом режиме. В соответствии с определением

дин = д.р ст.р ,

где дин – динамическая погрешность средства измерения;

д.р – погрешность средства измерения при использовании его в динамическом режиме;

ст.р – статическая погрешность средства измерения (погрешность при использовании средства измерений в статическом режиме).

Динамический режим измерений встречается не только при измерении изменяющейся величины, но и при измерении величины постоянной. И в том и в другом случаях возможна слишком высокая скорость "подачи информации" на средство измерений VQ (скорость изменения сигнала измерительной информации на входе средства измерений) которая оказывается соизмерима со скоростью преобразования измерительной информации VQ X и/или даже выше ее.

Например, в контрольно-сортировочных автоматах для измерения диаметров тел качения подшипников измеряется постоянная физическая величина – длина. Но из-за необходимости обеспечить высокую производительность автомата скорость изменения входного сигнала измерительной информации может оказаться выше скорости преобразования измерительной информации средством измерения. В таком случае из-за "запаздывания" с преобразованием сигнала возникают динамические погрешности (рис. 6).

Поскольку речь идет не столько о средствах измерений, сколько об их работе в специфическим режиме, динамическую погрешность не следует считать инструментальной. Эту погрешность нужно рассматривать более широко – как составляющую итоговой (интегральной) погрешности, обусловленную динамическим режимом измерения.

  1. Погрешность измерения. Классификация погрешностей измерений по источникам возникновения. Инструментальные погрешности.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Классификация погрешностей измерений по источникам возникновения разнообразны и несколько запутаны. Не может быть абсолютно строгой классификации источников погрешностей, поскольку воздействия источников переплетаются. Методические погрешности в некоторой степени определяются выбранным средством измерений, условия измерений (если они связаны с теми влияющими величинами, которые оказывают воздействие на средства измерений) можно рассматривать как источник дополнительных инструментальных погрешностей, дискомфортные условия измерений приводят к увеличению субъективных погрешностей и т.д.

Поскольку деление погрешностей по источникам их возникновения не является самоцелью, а используется для выявления составляющих, наиболее часто используется и представляется достаточно логичной следующая классификация:

  • погрешности средств измерений (они же "инструментальные погрешности" или "аппаратурные погрешности");

  • методические погрешности измерения или "погрешности метода";

  • погрешности из-за отличия условий измерения от нормальных ("погрешности условий");

  • погрешности оператора (или же "субъективные погрешности", "личные" либо "личностные погрешности").

Инструментальная погрешность измерения – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

К инструментальным погрешностям относят погрешности всех применяемых в данной методике средств измерений и вспомогательных устройств, включая погрешности прибора, мер для его настройки, дополнительных сопротивлений, шунтов, установочных узлов или соединительных проводов и т.д.

Например, при измерении массы на весах методом сравнения с мерой к погрешности весов добавляются погрешности гирь.

  1. Погрешность измерения. Классификация погрешностей измерений по источникам возникновения. Методические погрешности.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Погрешность метода измерений – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.

Чтобы не связывать напрямую «методы измерений» и «погрешность метода», поскольку такой связи не существует, предпочтительно рассматриваемый класс погрешностей называть «методическими погрешностями».

Методические погрешности могут возникать из-за несоответствий реальной методики выполнения измерений идеальным теоретическим положениям, на которых основаны измерения. Эти погрешности в свою очередь делятся на две группы:

  1. погрешности из-за допущений, принятых при измерении или обработке результатов, а также используемых в ходе измерительного преобразования приближений и упрощений (погрешности из-за несоответствия процесса измерительного преобразования его идеальной модели).

В большинстве случаев погрешности из-за принятых допущений пренебрежимо малы, но в случае прецизионных измерений их приходится оценивать и учитывать или компенсировать.

Пр.: измерение параметров электрической цепи специально подключаемым прибором приводит к некоторому изменению структуры цепи из-за подключения дополнительной нагрузки.

измерение массы взвешиванием на рычажных весах с гирями в воздушной среде, как правило, осуществляют без учета воздействия на меры и объект выталкивающей архимедовой силы, которой бы не было при взвешивании в вакууме.

измерение линейных размеров всегда базируется на теоретическом допущении идеально гладких границ твердого тела, что противоречит наличию микрогеометрии и субмикрогеометрии поверхности контролируемой детали.

  1. некорректная идеализация реального объекта измерений (погрешности из-за несоответствия объекта измерения идеализированной модели, положенной в основу процесса измерения).

Некорректная идеализация формы объекта при линейных измерениях может привести к возникновению методических погрешностей, которые могут существенно превышать инструментальную составляющую.

Пр.: измерения диаметра номинально цилиндрической детали станковым средством измерений (измерительной головкой на стойке), в частности, измерение детали с седлообразной поверхностью

  1. Погрешность измерения. Классификация погрешностей измерений по источникам возникновения. Погрешности условий.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.

Фактически эти погрешности имеют место тогда, когда не удается выдержать нормальные условия измерений.

К погрешностям из-за несоблюдения нормальных условий измерений следует отнести все составляющие погрешности измерения, которые вызваны воздействием на измеряемый объект и средства измерений любой влияющей физической величины, выходящей за пределы нормальной области значений. Влияющие физические величины обычно обусловлены температурными, электромагнитными и другими полями в рабочей зоне (измерительная позиция и ближайшее окружение), давлением воздуха, его избыточной влажностью, наличием вибраций на рабочем месте, где выполняются измерения.

Есть множество других факторов, которые могут привести к искажению самой измеряемой величины и (или) измерительной информации о ней. Например, изменение температуры не приводит к изменению массы, но вызывает изменения линейных размеров, изменения сопротивления прохождению электрического тока. Повышенная влажность не влияет на размеры металлических деталей, но может привести к изменению размеров и массы изделий из гидрофильных материалов, которые впитывают влагу из окружающей атмосферы.

Погрешности условий "погрешности присутствия", "погрешности отсчитывания", "погрешности действия" и "профессиональные погрешности" не есть хорошо. Поскольку под "погрешностями присутствия" понимают те, которые вызваны температурным (и другими) полями оператора, представляется более правильным рассматривать оператора всего лишь как один из источников возмущения, вызывающий искажение условий измерения.

  1. Погрешность измерения. Классификация погрешностей измерений по источникам возникновения. Субъективные погрешности.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

Субъективная погрешность измерения (личная погр.) – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.

Субъективные погрешности включают погрешности отсчитывания и погрешности манипулирования средствами измерений и измеряемым объектом. При измерениях часто приходится оперировать устройствами совмещения, настройки и корректировки нуля, арретирования, базирования СИ и измеряемого объекта, устройствами присоединения СИ к объекту для снятия сигнала измерительной информации (чувствительными элементами). Такие манипуляции часто приводят к погрешностям, особенно существенным у операторов с недостаточно высокой квалификацией.

Погрешности отсчитывания возникают при использовании аналоговых средств измерений с устройством выдачи измерительной информации типа "шкала-указатель". При положении указателя между отметками шкалы отсчитывание осуществляется либо с округлением до ближайшего деления, либо с интерполированием доли деления на глаз. Погрешность округления результата до целого деления составляет не более половины цены деления отсчетного устройства, а при интерполировании доли деления погрешность отсчитывания еще меньше и составляет не более 1/10 части цены интерполируемого деления (у опытных операторов при удачной эргономике отсчетного устройства – не более 1/20 части деления).

В случае, если плоскости шкалы и указателя не совпадают, возможно возникновение погрешности отсчитывания из-за параллакса при "косом" направлении взгляда оператора

Для уменьшения погрешностей от параллакса используют методы сближения указателя со шкалой (скошенные кромки нониуса штангенциркуля и барабана микрометра, расположенный в плоскости шкалы световой указатель), а также искусственные приемы получения нормального угла зрения (специальные наглазники и налобники в оптических приборах, зеркальная полоска под шкалой электроизмерительных приборов и др.).

Очевидно, что погрешности отсчитывания в рассмотренной интерпретации (погрешности округления или интерполирования и погрешности из-за параллакса) не возникают при использовании приборов с дискретной выдачей информации на цифровых табло.

  1. Погрешность измерения. Классификация погрешностей измерений по характеру проявления в результатах измерений. Случайная погрешность измерения. Механизм образования случайных погрешностей.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением)

В метрологии встречаются разные классификации погрешностей измерений по характеру их проявления (изменения). Традиционным является деление погрешностей на случайные, систематические и грубые.

Стандартное определение случайной погрешности измерения в строгом смысле не является определением, поскольку содержит "порочный круг" (составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины). Кроме того, здесь опять использовано некорректное упоминание измерений одной и той же величины.

Случайными погрешностями в строгом смысле термина можно считать только те, которые обладают статистической устойчивостью (ведут себя как центрированная случайная величина). Причиной появления таких погрешностей чаще всего является совокупное действие ряда слабо влияющих дестабилизирующих факторов, связанных с любыми источниками погрешностей, причем функциональные связи этих факторов (аргументов) с погрешностями либо отсутствуют (в наличии только стохастические зависимости), либо не могут быть выявлены из-за неопределенности действующих факторов и большого их числа. Поскольку механизмы образования значительной части погрешностей измерений и их составляющих сходны с механизмами формирования случайных величин, можно ожидать наличия в результатах измерений случайных погрешностей. Это допущение дает возможность использовать для обработки результатов измерений со случайными погрешностями аппарат теории вероятностей и математической статистики.

Случайная погрешность измерения – погрешность проявляющаяся в результате наблюдения как случайная величина, которая будучи непредсказуемой по своему значения и знаку в каждом конкретном результате в совокупности проявлений обладает статистической устойчивостью и может быть описана с помощью теории вероятностей и мат статистики

  1. Погрешность измерения. Классификация погрешностей измерений по характеру проявления в результатах измерений. Систематическая погрешность измерения. Механизм образования систематических погрешностей. Виды систематических поверхностей.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением)

К систематическим погрешностям измерений можно отнести те составляющие, для которых можно считать доказанным наличие функциональных связей с вызывающими их аргументами. Для них можно предложить следующее определение: систематическая погрешность – закономерно изменяющаяся составляющая погрешности измерений.

Формально это записывается в виде s = F (, ...), где ,  – аргументы, вызывающие систематическую погрешность.

Главной особенностью систематической погрешности является принципиальная возможность ее выявления, прогнозирования и однозначной оценки, если удается узнать вид функции и значения аргументов. В зависимости от характера измерения (проявления) систематические погрешности подразделяют на:

1) Элементарные

Элементарные погрешности можно условно разделить на:

1.1)Постоянные. (s = a, или s = const)

1.2)Переменные: прогрессирующими- монотонно возрастающие или монотонно убывающие(линейные или неленейные) погрешности и периодические – погрешности, изменение которых можно описать периодической функцией.

Постоянные систематические погрешности представлены в графической форме на рис. 4а (s = a, или s = const), а переменные – на рис. 4 б – е. Простейшие переменные систематические погрешности, которые аппроксимируют графиками без перегибов (монотонно изменяющиеся или прогрессирующие) показаны на рис. 4 б – г, а периодические или гармонические погрешности – на рис. 4 е.

Обычно для описания и для аппроксимации систематической погрешности подбирают наиболее простую функцию, например линейную для прогрессирующей погрешности. Такой же упрощенный подход применяют и для аппроксимации гармонической систематической погрешности, которая может быть описана как синусоида, косинусоида, пилообразная либо другая периодическая функция.

Систематическая погрешность может иметь не только элементарный, но и более сложный характер, который можно аппроксимировать функцией, включающей приведенные простые составляющие.

2)Изменяющиеся по сложному закону - образуются при объединении нескольких систематических погрешностей.

Сложная систематическая погрешность, включающая постоянную, прогрессирующую и периодическую составляющую, в общем виде может быть описана выражением

s = a + b + dsin,

где a – постоянная составляющая сложной систематической погрешности;

,  – соответственно аргументы прогрессирующей и периодической составляющих сложной систематической погрешности.

  1. Грубые погрешности или промахи при измерениях. Методы отбраковывания результатов измерений с грубыми погрешностями.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением)

Погрешности, которые нельзя отнести ни к случайным, ни к систематическим из-за совершенно иного механизма образования и принципиально отличного значения, называют грубыми погрешностями измерений или промахами.

Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.

Очевидно, что причинами возникновения грубой погрешности могут быть промах оператора при снятии отсчета или его записи, ошибка в реализации метода измерений или сбой в измерительной цепи прибора. Причины появления грубых погрешностей резко выпадают из общего ряда аргументов, формирующих систематические и случайные составляющие погрешности измерений.

В некоторых метрологических источниках грубые погрешности измерений относят к случайным, что соответствует вульгарной трактовке понятия случайности и маскирует различия механизмов возникновения собственно случайных и грубых погрешностей.

"Грубая погрешность" фактически представляет собой результат допущенной при измерении ошибки. Такие погрешности в принципе индивидуально непредсказуемы, и их значения (в отличие от случайных погрешностей) невозможно прогнозировать с учетом вероятности.

Фактически к результатам с грубыми погрешностями относят либо такие, которые явно не соответствуют ожидаемому результату измерений, либо не столь откровенно выраженные экстремальные значения, принадлежность которых к данному массиву результатов имеет весьма малую вероятность.

Отбрасывание(элиминация) результатов с грубыми погрешностями предупреждает возможность значительного искажения оценки результатов измерений. Оно может осуществляться либо цензурированием явно нелепых значений, либо статистическим отбраковыванием отдельных экстремальных результатов (подозрительных на наличие грубых погрешностей), которое основано на принципе практической уверенности. Применение этого принципа позволяет отбрасывать те значения, вероятность появления которых в исследуемом массиве данных меньше некоторого заранее выбранного значения.

  1. Погрешность измерения. Определённые погрешности измерений.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением)

Логически обоснованной представляется следующая укрупненная классификация погрешностей измерений по степени полноты информации об их характере и значениях.

К определенным можно отнести любые известные по числовому значению и знаку погрешности. Известными могут стать, например те составляющие погрешности измерений, которые имеют достаточно жесткую функциональную связь с вызывающими их аргументами. Такие погрешности по сути совпадают с систематическими и принципиально могут быть выявлены и исключены из результатов измерений, их значения можно прогнозировать.

Определенной можно считать также любую (в том числе и уже зафиксированную случайную или даже грубую) погрешность, числовое значение и знак которой найдены экспериментально.

Определенные погрешности в зависимости от характера и полноты информации могут быть исключены из результатов измерений. Высокий уровень определенности систематических погрешностей делает возможным исключение этих погрешностей до измерений, в процессе измерений(за счет соотв организации выполнения изм), а также при математической обработке результатов измерительного эксперимента после выполнения измерений.

Исключение систематических погрешностей измерения не только из отдельных результатов измерений, но из целых серий, полученных при многократных измерениях одной и той же физической величины, в метрологии принято называть "исправлением результатов", а полученные при этом результаты – исправленными.

Статистическая обработка массивов результатов измерений, образующих серии, недопустима без предварительного "исправления результатов.

  1. Погрешность измерения. Неопределённые погрешности измерений.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Формально погрешность можно представить выражением = X – Q,(1) где  – абсолютная погрешность измерения; X – результат измерения физической величины; Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением)

К неопределенным погрешностям следует отнести невыявленные систематические, а также погрешности случайные (собственно случайные) и грубые погрешности, значения которых не были определены экспериментально.

Как и все другие погрешности, неопределенные систематические погрешности могут быть либо значимыми, либо пренебрежимо малыми. К значимым неопределенным систематическим погрешностям относятся те невыявленные систематические погрешности и неисключенные остатки систематических погрешностей, которые соизмеримы со случайными составляющими погрешности измерений.

Невыявленные систематические погрешности, существенно превосходящие случайные составляющие, могут возникать из-за ошибок, допущенных разработчиками методики измерений вследствие недостаточной метрологической квалификации, либо из-за низкой квалификации операторов, стабильно повторяющих неправильные операции при выполнении измерительной процедуры. Причинами таких погрешностей могут быть также значительные отличия условий измерений от нормальных, не замеченные из-за невнимательного отношения оператора. Невыявленные систематические погрешности, превосходящие случайные составляющие, могут привести к существенному искажению результатов измерений. При оценке и исключении определенных погрешностей абсолютная точность невозможна, поэтому в результатах наблюдения всегда содержатся некоторые неисключенные остатки погрешностей. Наиболее интересным здесь является возможность при определенных условиях рассматривать неисключенные остатки систематических погрешностей как случайные погрешности.

Неисключенная систематическая погрешность – составляющая погрешности результата измерений, обусловленная погрешностями вычисления и введения поправок на влияние систематических погрешностей или систематической погрешностью, поправка на действие которой не введена вследствие ее малости.

Неисключенные остатки систематических погрешностей имеют место при любом, даже самом тщательном выявлении и исключении систематических составляющих. Поскольку далеко не всегда удается выявить вид зависимости аргумент-погрешность, а в ряде случаев неизвестными остаются и сами значения аргументов, в результатах измерений всегда присутствуют неисключенные систематические погрешности, которые в соответствии с предлагаемой классификацией относятся к погрешностям неопределенным

  1. Математическая обработка результатов измерений. Общий алгоритм статистической обработки результатов прямых равнорассеянных измерений.

При математической обработке результата косвенного измерения следует

выполнить следующие операции.

1. Для каждой из непосредственно измеряемых величин вычислить:

а) среднее арифметическое результатов наблюдений x;

б) среднее квадратическое отклонение результата измерения Sx;

в) доверительную границу случайной погрешности результата измерения εx ;

г) доверительную границу неисключенной систематической

погрешности результата измерения θx;

д) доверительную границу погрешности результата измерения Δх.

2. Записать результат каждого прямого измерения в виде

X =

x ,

Δx = … ,

3. Вычислить наиболее вероятное значение результата косвенного

измерения y .

4. Получить (если она не дается в руководстве к лабораторной работе) 16

выражение для относительной погрешности у косвенного измерения и найти

ее числовое значение. (При выводе формулы для γ расчетную формулу

Y= f (Х1, Х2,..., Хт ) целесообразно предварительно прологарифмировать).

5. Вычислить доверительную границу абсолютной погрешности ΔY

результата косвенного измерения:

ΔY =γy

6. Записать окончательный результат измерения

Y = y

± ΔY Р = 0,95.

  1. Статистическая обработка результатов прямых равнорассеянных измерений. Оценка вида распределения случайных погрешностей измерений. Построение гистограммы и полигона статистического распределения. Аппроксимация статистических распределений с использованием различных теоретических функций распределения плотности вероятности, описывающих соответствующие законы распределения.

При статистической обработке группы результатов наблюдений следует выполнить следующие операции:

исключить известные систематические погрешности из результатов наблюдений;

вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения;

вычислить оценку среднего квадратического отклонения результата наблюдения;

вычислить оценку среднего квадратического отклонения результата измерения;

проверить гипотезу о том, что результаты наблюдений принадлежат нормальному распределению;

вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;

вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;

вычислить доверительные границы погрешности результата измерения.

1.2. Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

1.3. Для определения доверительных границ погрешности результата измерения доверительную вероятность P принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности P = 0,95, допускается указывать границы для доверительной вероятности P = 0,99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо P = 0,99 принимать более высокую доверительную вероятность

Тенденции изменения результатов в сериях измерений, проявляющиеся на точечных диаграммах, представлены на рис. 2 (а – наклон, б – мода, в – гармонические изменения аппроксимирующей линии).

Наличие закономерностей изменения результатов свидетельствуют о присутствии в серии переменных систематических погрешностей. Характер таких погрешностей в первом приближении можно оценить по виду наблюдаемой тенденции изменения результатов (монотонно возрастающие или убывающие, переменные с одним или несколькими экстремумами…), для оформления которой используют аппроксимирующие линии. Аппроксимацию, как правило, осуществляют простейшими линиями: прямой, участком дуги окружности или параболы, для периодических изменений – синусоидой (косинусоидой).

Отклонения результатов от аппроксимирующей линии могут рассматриваться как случайные составляющие погрешности измерения. Более представительной принято считать среднее квадратическое значение отклонений, которое рассчитывают с использованием статистической обработки всех значений отклонений в серии.

Многократные измерения одной и той же физической величины с использованием одной методики выполнения измерений позволяют численно оценить сходимость измерений внутри серии. Высокая сходимость результатов отражается на диаграмме отсутствием тенденций изменения результатов и малыми случайными отклонениями от аппроксимирующей линии (от «текущего среднего значения»).

Анализ результатов измерений каждой отдельной серии обычно начинают с выявления и качественной оценки тенденции изменения результатов измерений. На диаграмму наносят аппроксимирующую линию, соответствующую характеру изменения результатов серии. При анализе диаграмм могут встретиться три варианта:

  • серия без тенденции изменения результатов;

Свидетельствует об отсутствии в серии переменной систематической погрешности, диаграмму аппроксимируют прямой линией, параллельной оси абсцисс. Такая аппроксимация свидетельствует о наличии в серии постоянной систематической составляющей погрешности, значение которой оценить невозможно(может быть значимая либо пренебрежимо малая погрешность).

  • серия без явно выраженной тенденции изменения результатов;

При отсутствии в серии явно выраженной тенденции изменения результатов ее также как и в первом варианте аппроксимируют прямой линией, параллельной оси абсцисс.

  • серия c явной тенденцией изменения результатов.

Для аппроксимации диаграмм c явной тенденцией по возможности выбирают наклонные прямые линии или простейшие кривые линии в виде параболы, дуги окружности, синусоиды. При любой аппроксимации обязательно будут наблюдаться несовпадение результатов и аппроксимирующей линии. Отклонения могут быть вызваны объективными причинами (наличие случайных погрешностей в результатах измерений), или несоответствующей аппроксимацией результатов (неправильный характер и расположение аппроксимирующей линии).

Проведенные на точечной диаграмме аппроксимирующая линия и эквидистанты позволяют количественно оценить не только размахи отклонений R' и R (общий размах результатов измерений и размах частично исправленных результатов измерений), но и другие параметры и характеристики точечной диаграммы, включая изменение прогрессирующей составляющей в серии результатов (приращение а в пределах серии), амплитуду А или удвоенную амплитуду периодической составляющей, а также ее ориентировочный период Т в числах (номерах) наблюдений.

  1. Статистическая обработка результатов прямых равнорассеянных измерений. Проверка нормальности распределения результатов наблюдений и случайных погрешностей. Критерий Пирсона (χ2)

При статистической обработке группы результатов наблюдений следует выполнить следующие операции:

исключить известные систематические погрешности из результатов наблюдений;

вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения;

вычислить оценку среднего квадратического отклонения результата наблюдения;

вычислить оценку среднего квадратического отклонения результата измерения;

проверить гипотезу о том, что результаты наблюдений принадлежат нормальному распределению;

вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;

вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;

вычислить доверительные границы погрешности результата измерения.

1.2. Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

1.3. Для определения доверительных границ погрешности результата измерения доверительную вероятность P принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности P = 0,95, допускается указывать границы для доверительной вероятности P = 0,99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо P = 0,99 принимать более высокую доверительную вероятность

Эта задача представляет собой частный случай более общей проблемы, заключающейся в подборе теоретической функции распределения, в некотором смысле наилучшим образом согласующейся с опытными данными.

При большом числе результатов наблюдений (n>40) данная задача решается в следующем порядке.

Весь диапазон полученных результатов наблюдений Xmax…Xmin разделяют на r интервалов шириной ΔXi (i=1,2,…r) и подсчитывают частоты mi, равные числу результатов, лежащих в каждом i-м интервале, т. е. меньших или равных его правой и больших левой границы.

Отношения

 

где n — общее число наблюдений, называются частостями и представляют собой статистические оценки вероятностей попадания результата наблюдений в i-й интервал. Распределение частот по интервалам образует статистическое распределение результатов наблюдений.

Если теперь разделить частость на длину интервала, то получим величины

 (51)

являющиеся оценками средней плотности распределения в интервале ΔXi.

Отложим вдоль оси результатов наблюдений (рис. 11) интервалы ΔXi в порядке возрастания индекса i и на каждом интервале построим прямоугольник с высотой, равной pi*. Полученный график называется гистограммой статистического распределения.

Площадь суммы всех прямоугольников равна единице:

 

При увеличении числа наблюдений число интервалов можно увеличить. Сами интервалы уменьшаются, и гистограмма все больше приближается к плавной кривой, ограничивающей единичную площадь, — к графику плотности распределения результатов наблюдений.

Критерий согласия Пирсона[1] , или критерий согласия (Хи-квадрат) — наиболее часто употребляемый критерий для проверки гипотезы о принадлежности наблюдаемой выборки объёмом некоторому теоретическому закону распределения .

Статистика критерия

Процедура проверки гипотез с использованием критериев типа предусматривает группирование наблюдений. Область определения случайной величины разбивают на непересекающихся интервалов граничными точками

 ,

где – нижняя грань области определения случайной величины; – верхняя грань.

В соответствии с заданным разбиением подсчитывают число выборочных значений, попавших в -й интервал, и вероятности попадания в интервал

 ,

соответствующие теоретическому закону с функцией распределения .

При этом

 и .

При проверке простой гипотезы известны как вид закона , так и все его параметры (известен скалярный или векторный параметр ).

В основе статистик, используемых в критериях согласия типа , лежит измерение отклонений от .

Статистика критерия согласия Пирсона определяется соотношением

.

В случае проверки простой гипотезы в пределе при эта статистика подчиняется -распределению с степенями свободы, если верна проверяемая гипотеза . Плотность -распределения, которое является частным случаем гамма-распределения, описывается формулой

.

Проверяемая гипотеза отклоняется при больших значениях статистики, когда вычисленное по выборке значение статистики больше критического значения или достигнутый уровень значимости (p-value)

больше заданного уровня значимости (заданной вероятности ошибки 1-го рода) 

  1. Статистическая обработка результатов прямых равнорассеянных измерений. Определение доверительных границ погрешности результата измерения. Формы представления результата измерения.

При статистической обработке группы результатов наблюдений следует выполнить следующие операции:

исключить известные систематические погрешности из результатов наблюдений;

вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения;

вычислить оценку среднего квадратического отклонения результата наблюдения;

вычислить оценку среднего квадратического отклонения результата измерения;

проверить гипотезу о том, что результаты наблюдений принадлежат нормальному распределению;

вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;

вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;

вычислить доверительные границы погрешности результата измерения.

1.2. Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

1.3. Для определения доверительных границ погрешности результата измерения доверительную вероятность P принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности P = 0,95, допускается указывать границы для доверительной вероятности P = 0,99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо P = 0,99 принимать более высокую доверительную вероятность

Доверительные границы случайной погрешности результата измерения в соответствии с настоящим стандартом устанавливают для результатов наблюдений, принадлежащих нормальному распределению.

Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

При числе результатов наблюдений n > 50 для проверки принадлежности их к нормальному распределению по НТД предпочтительным является один из критериев: 2 Пирсона или 2 Мизеса-Смирнова.

При числе результатов наблюдений 50 > n > 15 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий, приведенный в справочном приложении 1.

При числе результатов наблюдений n  15 принадлежность их к нормальному распределению не проверяют. При этом нахождение доверительных границ случайной погрешности результата измерения по методике, предусмотренной настоящим стандартом, возможно в том случае, если заранее известно, что результаты наблюдений принадлежат нормальному распределению.

Доверительные границы  (без учета знака) случайной погрешности результата измерения находят по формуле

,

где t - коэффициент Стьюдента, который в зависимости от доверительной вероятности P и числа результатов наблюдений n находят по таблице приложения 2.

В целях единообразия отражения результатов и погрешностей измерений необходимо применять однотипные показатели точности измерений и формы представления результатов измерений.  Распространенной ошибкой при оценке результатов и погрешностей измерений является их вычисление и запись с большим числом значащих цифр. Этому способствует применение компьютеров, дающих результаты расчета с четырьмя и более значащими цифрами. Однако погрешности измерений не всегда требуется знать с очень высокой точностью. В частности, для технических измерений допустимой считается погрешность оценивания погрешности в 15…20 %. Так, вычислив значение погрешности 0,4359, а результата измерения — 12,7254, надо подумать, имеет ли смысл запись результата с такой погрешностью. Ведь если исходить из того, что недостоверность результата уже характеризуется десятыми долями (0,4...), то вклад последующих значащих цифр в погрешность будет все менее весом. Поэтому и необходимо ограничивать число значащих цифр в записи результата измерения.  Установлено, что в численных показателях точности измерений и их погрешностях должно быть не более двух значащих цифр. Так, при записи наименьшие разряды числовых значений результата измерения и численных показателей точности должны быть одинаковы. В приведенном примере оценка погрешности должна быть записана как 0,43 или 0,4, а результат измерения — 12,72 или 12,7 соответственно. Расчет погрешностей округления погрешности измерения показывает, что при округлении значений погрешности до двух значащих цифр она составляет не более 5 %, а при округлении до одной значащей цифры — не более 50 %. При этом характеристики погрешности оценивают приближенно; точность оценок согласовывают с целью измерения.

Правила округления результатов и погрешностей измерений

1. Результат измерения округляют до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности. Лишние цифры в целых числах заменяют нулями. Если десятичная дробь в числовом значении результата измерений оканчивается нулями, то нули отбрасывают до того разряда, который соответствует разряду числового значения погрешности

Если руководствоваться этими правилами округления, то количество значащих цифр в числовом значении результата измерений дает возможность ориентировочно судить о точности измерения. Это связано с тем, что предельная погрешность, обусловленная округлением, равна половине единицы последнего разряда числового значения результата измерения.

  1. Общие методы выявления и оценки погрешностей измерений.

В метрологии достаточно часто применяют методы оценки комплексной погрешности измерения физической величины. Общие методы, пригодные для выявления и оценки погрешностей измерения независимо от их характера и источников возникновения, базируются на решении уравнения

 = X – Q,

где  – абсолютное значение искомой погрешности,

X – результат измерения, Q – истинное значение измеряемой величины.

Это уравнение содержит два неизвестных и в строгом математическом смысле неразрешимо, следовательно, для получения удовлетворительного решения необходимо заменить одно из неизвестных его приближенным значением. Получение таких значений и составляет суть общих методов выявления и оценки погрешностей.

  1. Математическая обработка результатов косвенных измерений.

Математическая обработка результатов косвенных измерений(при отсутствии корреляции между частными погрешностями измерений).

Порядок статистической обработки результатов косвенных измерений можно представить следующим образом:

1. Статистическая обработка результатов прямых измерений и нахождение Xср i и σср i .

2. Расчет искомого значения ФВ (точечной оценки результата косвенных измерений)

Q = f(Xср1, Xср2,..., Xср n).

3. Определение оценки каждой частной погрешности с учетом ее весового коэффициента

EXi =kiσср i ,где ki = дf/дXi|

|Xi =Xi ср

4. Определение оценки погрешности (среднего квадратического отклонения) результата косвенного измерения.

Оценку погрешности результата косвенного измерения рассчитывают с учетом весовых коэффициентов частных погрешностей.

4’. При практическом отсутствии корреляции между величинами, получаемыми в результате прямых измерений, что имеет место, например, в независимых измерениях длин для определения объема или длин и массы для расчета плотности

5. Определение значения коэффициента Стьюдента t в зависимости от выбранной доверительной вероятности Р и запись результата косвенного измерения в установленной форме

Q = tσQi, Р = 0,...

Математическая обработка результатов косвенных измерений(при наличии корреляции между частными погрешностями измерений).

4’. При значимой стохастической связи оценка среднего квадратического отклонения (оценка погрешности косвенного измерения) рассчитывается с учетом коэффициента корреляции Rij

где

  1. Метрологические характеристики средств измерений. Интегральные метрологические характеристики средств измерений, осуществляющих измерительные преобразования. Номинальные и действительные функции преобразования.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Основные метрологические характеристики:

  1. Номинальная статическая функция преобразования – зависимость между информационными параметрами входного и выходного сигнала. Вводится для типа средства измерения.

  2. Действительная функция преобразования (уравнение преобразования) – реальная характеристика преобразования. В виде функциональной зависимости, таблицы входных и выходных значений, функции в координатах.

  3. Чувствительность – отношение приращения выходной величины к вызвавшему это приращение приращения входной величины.

  4. Порог чувствительности (разрешающая способность) – минимальное значение входной величины, которое может быть обнаружено по изменению выходной величины.

  5. Постоянная прибора – отношение некоторого значения измеряемой величины к показанию прибора в делениях.

  6. Цена деления – разность между соседними отметками шкалы, причем, если эта разность есть величина постоянная, то шкала равномерная.

  7. Диапазоны показаний – разность между максимальным и минимальным значениями.

  8. Диапазоны измерений – область на шкале средства измерения, в которой определены (заданы) метрологические характеристики – рабочий диапазон

  9. Характеристики средства измерения, влияющие на измерительную цепь.

Погрешности средства измерения. Основная, дополнительная. Аддитивная, мультипликативная.

  1. Метрологические характеристики средств измерений. Основные частные метрологические характеристики средств измерений

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Основные метрологические характеристики:

  1. Номинальная статическая функция преобразования – зависимость между информационными параметрами входного и выходного сигнала. Вводится для типа средства измерения.

  2. Действительная функция преобразования (уравнение преобразования) – реальная характеристика преобразования. В виде функциональной зависимости, таблицы входных и выходных значений, функции в координатах.

  3. Чувствительность – отношение приращения выходной величины к вызвавшему это приращение приращения входной величины.

  4. Порог чувствительности (разрешающая способность) – минимальное значение входной величины, которое может быть обнаружено по изменению выходной величины.

  5. Постоянная прибора – отношение некоторого значения измеряемой величины к показанию прибора в делениях.

  6. Цена деления – разность между соседними отметками шкалы, причем, если эта разность есть величина постоянная, то шкала равномерная.

  7. Диапазоны показаний – разность между максимальным и минимальным значениями.

  8. Диапазоны измерений – область на шкале средства измерения, в которой определены (заданы) метрологические характеристики – рабочий диапазон

  9. Характеристики средства измерения, влияющие на измерительную цепь.

Погрешности средства измерения. Основная, дополнительная. Аддитивная, мультипликативная.

  1. Метрологические характеристики средств измерений. Деление метрологических характеристик на группы согласно ГОСТ 8.009-84. Номинальные метрологические характеристики мер.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Номинальные метрологические характеристики мер однозначной и многозначной включают значения мер, представляемые именованными числами (одно номинальное значение Y для однозначной меры или N значений многозначной меры Yi). Для штриховых многозначных мер обязательны также характеристики, связанные со шкалой, которые рассматриваются ниже (см. МХ аналоговых СИ). Для любых мер кроме номинальных значений обязательно нормируются характеристики погрешностей, а другие МХ нормируются только по необходимости.

Для измерительного преобразователя интегральной МХ является функция преобразования СИ. Она может быть задана в виде формулы, таблицы или графика, которые представляют номинальную функцию преобразования СИ Zо = f(Y).

Yсигнал на входе преобразователя; Zсигнал на выходе преобразователя; jноминальная ступень квантования

Функция преобразования отдельного экземпляра СИ может быть представлена конкретной реализацией, которую называют статической характеристикой СИ или градуировочной характеристикой. Она также оформляется в виде таблицы или графика. Под градуировкой здесь понимают определение градуировочной характеристики СИ. Градуировкой в узком смысле называют также нанесение отметок на шкалу прибора, что соответствует воспроизведению на приборе номинальной функции преобразования СИ.

  1. Метрологические характеристики средств измерений. Деление метрологических характеристик на группы согласно ГОСТ 8.009-84. Номинальные метрологические характеристики измерительных преобразователей.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

В характеристики погрешностей измерительного прибора или преобразователя входят:

  • значение погрешности СИ (если доминирующей составляющей является случайная составляющая погрешности, а не исключенной систематической погрешностью СИ можно пренебречь);

  • значение случайной составляющей погрешности СИ;

  • значение среднего квадратического отклонения случайной составляющей погрешности СИ;

  • значение среднего квадратического отклонения случайной составляющей погрешности СИ и нормализованная автокорреляционная функция или функция спектральной плотности случайной составляющей погрешности СИ;

  • значение случайной составляющей погрешности СИ от гистерезиса (от вариации выходного сигнала);

  • значение систематической составляющей погрешности СИ;

  • значение систематической составляющей погрешности СИ, или значение среднего квадратического отклонения систематической составляющей погрешности СИ и математическое ожидание систематической составляющей погрешности СИ.

При определении оценок систематической составляющей погрешности СИ необходимо учитывать, что систематические составляющие конкретного экземпляра СИ рассматриваются как случайные величины на множестве СИ данного типоразмера.

  1. Метрологические характеристики средств измерений. Деление метрологических характеристик на группы согласно ГОСТ 8.009-84. Номинальные метрологические характеристики измерительных приборов.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

В характеристики погрешностей измерительного прибора или преобразователя входят:

  • значение погрешности СИ (если доминирующей составляющей является случайная составляющая погрешности, а не исключенной систематической погрешностью СИ можно пренебречь);

  • значение случайной составляющей погрешности СИ;

  • значение среднего квадратического отклонения случайной составляющей погрешности СИ;

  • значение среднего квадратического отклонения случайной составляющей погрешности СИ и нормализованная автокорреляционная функция или функция спектральной плотности случайной составляющей погрешности СИ;

  • значение случайной составляющей погрешности СИ от гистерезиса (от вариации выходного сигнала);

  • значение систематической составляющей погрешности СИ;

  • значение систематической составляющей погрешности СИ, или значение среднего квадратического отклонения систематической составляющей погрешности СИ и математическое ожидание систематической составляющей погрешности СИ.

При определении оценок систематической составляющей погрешности СИ необходимо учитывать, что систематические составляющие конкретного экземпляра СИ рассматриваются как случайные величины на множестве СИ данного типоразмера.

  1. Метрологические характеристики средств измерений. Характеристики погрешностей средств измерений согласно РМГ 29-99. Классы точности средств измерений.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Класс точности средств измерений - обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами средств измерений, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Классы точности присваиваются средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Класс точности хотя и характеризует совокупность метрологических свойств данного средства измерений, однако не определяет однозначно точность измерений, так как последняя зависит от метода измерений и условий их выполнения.

Средствам измерений с двумя или более диапазонами измерений одной и той же физической величены допускается присваивать два или более класса точности. Средствам измерений, предназначенным для измерений двух или более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины. С целью ограничения номенклатуры средтсв измерений по точности для СИ конкретного вида устанавливают ограниченное число классов точности, определяемое технико-экономическими обоснованиями.

Классы точности цифровых измерительных приборов со встроенными вычислительными устройствами для дополнительной обработки результатов измерений устанавливают без учета режима обработки.

  1. Метрологические характеристики средств измерений. Характеристики погрешностей средств измерений согласно ГОСТ 8.009-84. Характеристики чувствительности средств измерений к влияющим величинам.

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Характеристики чувствительности СИ к влияющим величинам:

  • функции влияния ФВ — зависимость изменения МХ СИ от изменения влияющей величины или от изменения совокупности влияющих величин;

изменения значений МХ СИ, вызванные изменениями влияющих величин в установленных пределах.

  1. Метрологические характеристики средств измерений. Динамические характеристики средств измерений. Неинформативные параметры выходного сигнала. Метрологическая исправность средств измерений. Сущность понятий «метрологический отказ» и «метрологическая надёжность».

Для выбора и назначения метрологических характеристик (МХ) следует, прежде всего, определить вид конкретного средства измерений (СИ), поскольку для разных СИ используют различные МХ и комплексы МХ.

В зависимости от функционального назначения и конструктивного исполнения различают такие виды средств измерений:

  • меры

  • измерительные преобразователи

  • измерительные приборы

  • индикаторы

В соответствии с ГОСТ 8.009-84 метрологические характеристики средств измерений делятся на следующие группы:

1. Характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными.

2. Характеристики погрешностей СИ. Сюда же можно отнести характеристики чувствительности СИ к влияющим величинам.

3. Динамические характеристики СИ.

4. Неинформативные параметры выходного сигнала СИ.

Характеристики чувствительности СИ к влияющим величинам:

Динамические характеристики, входящие в МХ конкретного средства измерений, делятся на полную динамическую характеристику и частные динамические характеристики.

Примеры полных динамических характеристик СИ:

  • переходная характеристика h(t) – временная характеристика средства измерений, полученная при ступенчатом изменении входного сигнала;

  • импульсная переходная характеристика g(t) – временная характеристика средства измерений, получаемая при в результате приложения ко входу средства измерений входного сигнала в виде дельта-функции (функции Дирака);

  • амплитудно-частотная характеристика A() – зависящее от круговой частоты отношение амплитуды выходного сигнала линейного СИ в установившемся режиме к амплитуде входного синусоидального сигнала.

Частные динамические характеристики аналоговых СИ, которые можно рассматривать как имеющие линейную функцию преобразования, – любые функционалы или параметры полных динамических характеристик. Примерами таких характеристик являются:

  • время реакции tr (для измерительного преобразователя – время установления выходного сигнала, для показывающего измерительного прибора – время установления показаний);

  • погрешность датирования отсчета td аналого-цифрового преобразователя или цифрового измерительного прибора – случайная величина – интервал времени, начинающийся в момент начала цикла преобразования АЦП или ЦИП и заканчивающийся в момент, когда значение изменяющейся измеряемой ФВ и значение выходного цифрового сигнала в данном цикле преобразования оказались равны;

  • максимальная частота (скорость) измерений fmax.

Дополнительными метрологическими характеристиками СИ могут быть неинформативные параметры выходного сигнала средства измерений. Например, для устройств с электрическим преобразованием измерительной информации в выходном каскаде принципиально важными являются сила или напряжение опорного электрического тока, который модулируется для получения соответствующего сигнала.

Метрологическая исправность средства измерений

"...Состояние средства измерений, при котором все нормируемые метрологические характеристики соответствуют установленным требованиям..."

Метрологический отказ средства измерений

"...Выход метрологической характеристики средства измерений за установленные пределы..."

Метрологической надежностью называют способность СИ сохранять установленное значение метрологических характеристик в течение заданного времени при определенных режимах и условиях эксплуатации.

  1. Выбор методик выполнения измерений (МВИ). Основные требования, предъявляемые к МВИ. Классификация измерительных задач. Назначение допускаемой погрешности измерения при решении различных измерительных задач.

Требования, предъявляемые к методике выполнения измерений (МВИ):

1.Обеспечение требуемой точности измерений. 2.Обеспечение экономичности измерений. 3.Обеспечение представительности (валидности) результатов измерений. 4.Обеспечение безопасности измерений.

Точность измерений является необходимым условием для использования их результатов. Несоблюдение этого условия делает невозможным получение действительного значения измеряемой физической величины и бессмысленным проведение измерений. Обеспечение точности измерений заключается в установлении требуемого соотношения допустимой погрешности измерений [Δ] и предельного значения реализуемой в ходе измерений погрешности Δ: Δ ≤ [Δ].

При оценке экономичности измерений учитывают производительность и себестоимость измерительной операции, необходимую квалификацию оператора, наличие конкурирующих СИ, цену универсальных СИ, стоимость разработки и изготовления нестандартизованного СИ, возможность многоцелевого использования данных СИ и др.

При многократных измерениях одной и той же ФВ представительность результата измерений обусловлена его достоверностью и связана с числом наблюдений при измерениях – чем больше (в разумных пределах) наблюдений в серии, тем более четко проявляются систематические составляющие погрешности измерений и тем достовернее становятся статистические оценки средних значений и границ случайной погрешности. Представительность результата измерений при многократных наблюдениях одной и той же ФВ зависит также от выбранной доверительной вероятности. Уровень представительности тем выше, чем больше вероятность накрытия истинного значения полученной интервальной оценкой.

При рассмотрении безопасности измерений следует анализировать опасности, связанные с измеряемым объектом, а также и те, которые могут нести средства измерений. Опасны высокие давления, механические и электрические напряжения, сила электрического тока, радиоактивность и многие другие. Источниками опасности применяемых средств измерений могут быть используемые для измерительных преобразований подвижные механические элементы, когерентные пучки оптических частот и другие энергетически насыщенные явления.

  1. Эталоны единиц физических величин. Виды эталонов.

Эталон представляет собой средство измерений (или комплекс средств измерений), обеспечивающее воспроизведения и хранения единиц физических величин (или одну из этих функций) с целью передачи размера единицы образцовым, а от них рабочим средствам измерений и утверждённое в качестве эталона в установленном порядке.

Первичным эталоном называется эталон, который воспроизводит единицу физической величины с наивысшей в стране точностью. Для воспроизведения единиц в особых условиях, в которых прямая передача размера единицы от существующих эталонов технически неосуществима с требуемой точностью (высокие и сверхвысокие частоты, энергии, давления, температуры, особые состояния веществ, крайние участки диапазона измерений и т.п.) создаются и утверждаются специальными эталонами.

Специальные эталоны воспроизводят единицу в особых условиях и заменяют в этих условиях первичный эталон.

Пример: специальный эталон мощности электромагнитных волн при частотах 2.59;…;37.5 ГГц в волноводных трактах.

Первичный или специальный эталон, официально утверждённый в качестве исходного для страны, называется государственным эталоном.

Дополнительные, производные, а при необходимости и внесистемные единицы, исходя из соображений технико-экономической целесообразности, воспроизводятся одним из двух способов:

  1. централизовано – с помощью единого для всей страны государственного эталона;

  2. децентрализовано – по средством косвенных измерений, выполняемых органами метрологической службы, с помощью образцовых средств измерений.

Централизовано воспроизводится большинство важнейших производных единиц СИ (ньютон, джоуль, паскаль, Ом, вольт, генри, вебер и другие), а децентрализовано – производные единицы, размер которых не может передаваться прямым сравнением с эталоном (например, единица площади), или, если поверка мер посредством косвенных измерений проще, чем их сравнение с эталоном и обеспечивает необходимую точность (например, меры вместимости объёма). При этом, когда для воспроизведения единицы необходимо специально предназначенное оборудование, создаются поверочные установки высшей точности. Пример: тахометрическая установка, сравнивающая частоту вращения исследуемого объекта с частотой образцового генератора.

Кроме первичных эталонов в метрологической практике широко используются вторичные эталоны, значения которых устанавливаются по первичным эталонам. Они создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ и для обеспечения сохранности и наименьшего износа государственного эталона.

Примеры: эталон копия единицы массы (килограмма) в виде платиноиридиевой гири №26 и рабочий эталон килограмма , изготовленный из нержавеющей стали.

По своему метрологическому назначению вторичные эталоны делятся на:

Эталон-копия представляет собой вторичный эталон, представленный для хранения единицы и передачи её размера рабочим эталонам. Он не всегда может быть физической копией государственного эталона.

Эталоны-сравнения – вторичный эталон, применяемый для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемыми другом с другом. Пример: группа нормальных элементов, применяемых для сличения государственного эталона вольта с эталоном вольта Международного бюро мер и весов.

Эталон-свидетель – вторичный эталон, применяемый для проверки сохранности государственного эталона и для замены его в случае порчи или утраты. Эталон-свидетель применяется только тогда, когда государственный эталон является невоспроизводимым.

Рабочий-эталон – вторичный эталон, применяемый для хранения единицы и передачи её размера образцовым мерам и измерительным приборам.

Допускается применение государственного эталона в качестве рабочего, если это предусмотрено правилами хранения и применения эталона.

В отличие от государственных эталонов, которые всегда осуществляются в виде комплекса средств измерений и вспомогательных устройств, вторичные эталоны могут осуществляться в виде:

- комплекса средств измерений -одиночных эталонов -групповых эталонов -эталонных наборов

Одиночный эталон состоит из одной меры, одного измерительного прибора, или одной измерительной установки, обеспечивающих воспроизведение или хранение единицы самостоятельно, без участия других средств измерений того же типа. Пример: вторичные эталоны единицы массы – килограмма в виде и стальных гирь.

Групповой эталон состоит из совокупности одноимённых мер, измерительных приборов или других средств измерений, применяемых как одно целое для повышения надёжности хранения единицы.

Размер единицы, хранимый групповым эталоном, определяется как среднее арифметическое из значений, воспроизводимых отдельными мерами и измерительными приборами, входящими в состав группового эталона. Основные меры и измерительные приборы, входящие в групповой эталон, могут применятся в качестве одиночных рабочих эталонов, если это допустимо по условиям хранения единицы. Групповые эталоны могут быть постоянного и переменного состава. В групповые эталоны переменного состава входят меры и измерительные приборы, периодически заменяемые новыми.

Эталонный набор представляет собой набор мер или измерительных приборов, позволяющий хранить единицу или измерять величину в определённых пределах. Эти меры или измерительные приборы предназначены для различных значений или различных областей значений – измеряемой величины.

  1. Передача размеров единицы физических величин рабочим средствам измерений. Государственные и локальные проверочные схемы.

Передача размеров единиц от эталонов рабочим мерам и измерительным приборам осуществляется посредством образцовых средств измерения.

Образцовые СИ (рабочие эталоны) – представляют собой меры, измерительные приборы или измерительные преобразователи, предназначенные для поверки и градировки по ним других средств измерений и в установленном порядке утвержденные в качестве образцовых. Образцовые СИ хранят и применяют органы Государственной метрологической службы и органы отраслевых (ведомственных) метрологических служб.

В качестве образцовых СИ применяются меры, измерительные приборы и измерительные преобразователи, прошедшие метрологическую аттестацию и признанные пригодными для использования в качестве образцовых. На образцовые СИ выдаются свидетельства с указанием метрологических характеристик и разряда по общегосударственной поверочной схеме.

Метрологическую цепь передачи размеров единиц от первичных эталонов (верхнее звено метрологической цепи) рабочим эталонам, от них – разряд-образцовым СИ и далее – рабочим мерам и измерительным приборам можно представить следующим образом:

Средства измерений в качестве образцовых утверждаются органами Государственной метрологической службы, располагающими образцовыми СИ более высокого разряда, чем представляемые для аттестации. В отдельных случаях, по разрешению органов Государственной метрологической службы предоставляется право утверждения образцовых СИ органами отраслевых метрологических служб при наличии у них требуемых условий.

Все образцовые СИ подлежат обязательной периодической поверке в сроки, устанавливаемые правилами Госстандарта.

Понятие о поверочных схемах. Поверочная схема представляет собой исходный документ, устанавливающий метрологическое соподчинение эталонов, образцовых СИ и порядок передачи размера единицы образцовым и рабочим СИ.

Исходные положения о поверочных схемах приведены в ГОСТ 8.061-80 “ГСИ. Поверочные схемы. Содержание и построение”.

Поверочные схемы подразделяются на государственные и локальные (отдельных органов государственной метрологической службы или ведомственных метрологических служб).

Государственные поверочные схемы должны служить основанием для составления локальных поверочных схем и для разработки государственных стандартов и метрологических указаний на методы и средства поверки образцовых и рабочих. Государственные поверочные схемы утверждаются в качестве государственных стандартов.

Элементами государственной поверочной схемы являются наименования государственных эталонов, эталонов-копий, эталонов-свидетелей, эталонов сравнения, рабочих эталонов образцовых СИ и рабочих СИ, а так же методов передачи размера единиц (методов поверки).

Общее количество разрядов образцовых СИ должно обеспечивать рациональную систему передачи размера единицы всем применяемым в стране рабочим СИ.

Поверочные схемы состоят из текстовой части и чертёжа. В локальные поверочные схемы допускается не включать текстовую часть.

На чертеже поверочной схемы указываются: наименования средств измерений, диапазоны значений физических величин, обозначения и оценка погрешностей, наименование методов поверки. Методы поверки, указываемые на поверочной схеме, должны отражать специфику поверки данного вида средств измерений.

Методы проверки

Поверка средств измерений – совокупность операций, выполняемых органами государственной метрологической службы и субъектами хозяйствования с целью определения соответствия средства измерения установленным требованиям.

Методы поверки:

  1. непосредственное сличение поверяемого СИ с образцовым СИ (т.е. без компаратора) того же вида (т.е. меры с мерой или измерительного прибора с измерительным прибором)

  2. сличение поверяемого СИ с образцовым СИ того же вида при помощи компаратора

  3. прямое измерение поверяемым измерительным прибором величины, воспроизводимой образцовой мерой

  4. прямое измерение образцовым измерительным прибором величины, воспроизведённой подвергаемой поверке мерой

  5. косвенным измерением величины, воспроизводимой мерой или измеряемой прибором, подвергаемым поверке

  6. независимой поверке, т.е. поверке СИ относительных (безразмерных) величин, не требующих передачи размеров единиц от эталонов или образцовых СИ, проградуированных в единицах размерных величин.

Если для данного вида измерений отсутствуют эталоны и их единицы воспроизводят косвенным путём, в верхнем поле поверочной схемы помещают наименование образцовых СИ, применяемых для воспроизведения данной единицы, заимствованные из поверочных схем для соответствующих СИ; при этом на поверочной схеме должна быть сделана ссылка на другие поверочные схемы, из которых заимствованы наименования образцовых СИ.

Кроме наименований рабочих СИ на поверочной схеме указывают диапазоны измерений и характеристики точности в виде класса точности, предела допускаемой погрешности или цены деления. Рабочие СИ группируются на поверочной схеме по диапазонам значений измеряемых величин, по точности и методам поверки.

На поверочной схеме указывают в кругах (или при наименовании метода, состоящем из нескольких слов, - в овале) конкретные методы поверки, применяемые в данной области измерений.

- Общая компоновка поверочной схемы выглядит следующим образом:

где: 1 – государственный эталон; 2 – метод передачи размера единицы; 3 – эталон-копия; 4 – эталон-свидетель; 5 - -рабочий эталон; 6,7,8 – образцовые СИ соответствующих разрядов; 9 – образцовые СИ заимствованные из других поверочных схем; 10 – рабочие СИ.

59. Сущность понятия «неопределённость измерения». Вычисление суммарной стандартной неопределённости и расширенной неопределённости измерения.

введено понятие неопределенность измерения, понимаемое как сомнение, неполное знание значения измеряемой величины после проведения измерений (трактовка в широком смысле) и как количественное описание этого неполного знания (трактовка в узком смысле). Далее это понятие уточняется: неопределенность — параметр, связанный с результатом измерения и характеризующий рассеяние значений, которые могли бы быть приписаны измеряемой величине. В математической статистике известны два вида параметров, характеризующих рассеяние некоррелированных случайных величин: СКО и доверительный интервал. Они и принимаются в качестве характеристик неопределенности с наименованиями стандартная неопределенность и расширенная неопределенность

Суммарная стандартная неопределенность – стандартная неопределенность результата наблюдения, когда результат получен из значений ряда других величин, равное сумме членов, причем, эти члены являются дисперсиями или коварияциями этих других величин, взвешенными в соответствии с тем, как результат измерений изменений в зависимости от изменения этих величин.

Расширенная неопределенность – величина, определяющая интервал вокруг результата измерений, в пределах которого можно ожидать , находится большая часть распределенного значения, которое с достаточным основанием могли быть приписаны измеряемой величине, по-другому такую неопределенность называют общей

  1. Метрологический контроль и его виды. Поверка средств измерений и её виды.

Метрологический контроль

контроль за исправностью показаний измерительной лабораторной техники со стороны государственной метрологической службы в оговоренные инструкциями сроки

Виды государственного метрологического контроля и надзора.

Осуществление метрологического контроля в сфере законодательной метрологии является одной из основных задач государственной метрологической службы.

Метрологический контроль включает в себя:

  • Утверждение типа средств измерений

  • Метрологическую аттестацию средств измерений

  • Поверку

  • Калибровку

  • Метрологическое подтверждение пригодности методик выполнения измерений

Поверка средств измерений — совокупность операций, выполняемых с целью подтверждения соответствия средств измерений метрологическим требованиям

Различают следующие виды поверок:

  • первичная поверка;

  • периодическая поверка;

  • внеочередная поверка;

  • инспекционная поверка;

  • экспертная поверка.

Первичная поверка СИ производится при выпуске СИ в обращение из производства, ремонта и при ввозе из-за рубежа.

Периодическая поверка СИ производится через определенные промежутки времени, называемые межповерочным интервалом.

Внеочередная поверка проводится вне зависимости от срока периодической поверки:

– при вводе в эксплуатацию СИ после длительного хранения (более одного межповерочного интервала);

– в случае повреждения клейма или утери свидетельства о поверке.

Инспекционная поверка производится для выявления пригодности к применению средств измерений при осуществлении государственного метрологического надзора.

Экспертная поверка проводится при возникновении разногласия по вопросам, относящимся к метрологическим характеристикам СИ.

Экспертная поверка проводится, как правило, по требованию суда, прокуратуры и по письмам потребителей.

Периодическая поверка производится органами государственной метрологической службы по утвержденным графикам. Графики периодической поверки составляются метрологическими службами предприятий и организаций, согласовываются с территориальными органами Госстандарта, утверждаются руководителем предприятия.

  1. Метрологический контроль и его виды. Метрологическая аттестация средств измерений.

Метрологический контроль

контроль за исправностью показаний измерительной лабораторной техники со стороны государственной метрологической службы в оговоренные инструкциями сроки

Виды государственного метрологического контроля и надзора.

Осуществление метрологического контроля в сфере законодательной метрологии является одной из основных задач государственной метрологической службы.

Метрологический контроль включает в себя:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]