Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TMM.doc
Скачиваний:
87
Добавлен:
31.05.2015
Размер:
904.19 Кб
Скачать
  1. Определения закона движения звена приведения.

Сущность метода определение законов движения звеньев и всего механизма сводится к интегрированию дифференциальных уравнений F = m*(d2s/dtau2) или T = J*(d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона).

Особенность определения законов движения звеньев:

  • многочисленность звеньев в сложных механизмах, поэтому для каждого звена могут быть свои законы движения;

  • связанность звеньев и следовательно, их движений

Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего механизма. Это значит, что энергия и характер ее изменения для звена приведения и для всего механизма в каждый момент времени одинаковы.

  1. Неравномерность вращения звена приведения и способы уменьшения неравномерности.

  1. Задачи и методы силового расчёта механизмов.

Задачи:

  • определение сил, действующих на звенья или на связи механизма;

  • определение уравновешивающей силы (уравновешивающего момента) на входном звене.

Цели:

  • накопление необходимых данных для последующего проектирования и конструирования механизма.

Методы решения:

  • принцип Даламбера: если добавить силу энерции, то система будет находиться в мгновенном равновесии и к ней применимы все законы статики;

  • состояние механической системы не изменится, если связи отбросить, а их действие заменить реакциями:

  1. Определение сил инерции.

Сила инерции – фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения F1+F2+…Fn = ma к виду

F1+F2+…Fn–ma = 0, где Fn – реально действующая сила, а ma – «сила инерции».

Закон инерции про инерционные системы отсчёта гласит, что без влияния неуравновешенных сил тело будет сохранять свою скорость или неподвижность. В качестве примера силы инерции можно рассмотреть простую силу инерции, которую можно ввести в равноускоренной системе отсчёта:

Написать пример с быстро останавливающимся автобусом полным пассажирами.

Среди сил инерции выделяют следующие:

  • простую силу инерции, которую мы только что рассмотрели;

  • центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

  • силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке – это силы инерции в данной точке искривлённого пространства Эйнштейна (см. принцип эквивалентности).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]