Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
195
Добавлен:
22.05.2015
Размер:
146.43 Кб
Скачать

8. Дозиметрия нейтронов.

Для регистрации нейтронов используют различные виды вторичных излучений, возникающих в результате ядерных реакций или рассеяния электронов на ядрах атомов вещества, используемого для дозиметрии. При этом энергия электронов в поглощающей среде преобразуется в энергию протонов и ядер отдачи, α-частиц, γ-квантов и продуктов деления.

Для дозиметрии тепловых нейтронов используют реакцию захвата (n, γ), для регистрации быстрых нейтронов – упругое и неупругое рассеяние, а для определения потоков нейтронов с промежуточной энергией рекомендуется уменьшить их энергию до тепловой, пропустив через слой парафина или другого замедлителя. Конструктивно счётчик нейтронов с промежуточной энергией выполняется в виде полой сферы из парафина со стенкой, толщиной порядка 15 см, в центре которой помещается счётчик тепловых нейтронов. Предполагается, что нейтроны промежуточных энергий, падающие на поверхность сферы, будут создавать в её центре поток тепловых нейтронов, который будет пропорционален биологической дозе.

Дозиметрия по существу сводится к определению потоков нейтронов с помощью пропорциональных счётчиков, ионизационных камер, радиационно-химических реакций, фотопластинок. Дозу быстрых нейтронов для поглощающей среды с известными параметрами можно рассчитать по формуле , где Е – энергия нейтронов,- поперечное сечение взаимодействия нейтронов с атомамиi-того типа,- средняя доля энергии, теряемая при соударении нейтрона сi-тым атомом,ci– число атомовi-того элемента в 1 г поглотителя.

9. Дозиметрическая и радиометрическая аппаратура.

Детекторами γ-, α- и β-излучений являются сцинтилляционные и пропорциональные счётчики, счётчики Гейгера-Мюллера (в том числе и 4π-счётчики, в которых радиоактивный источник со всех сторон окружён рабочим объёмом счётчика; если источник газообразный, он помещается в рабочий объём газового счётчика), ионизационные камеры, полупроводниковые счётчики и фотопластинки (фотоплёнки).

Ионизационные камеры, главным образом, используют для дозиметрии. Для этих же целей используются калориметрические и химические методы регистрации излучений. Для радиометрических нужд используют, как правило, сцинтилляционные и газовые счётчики, работающие в режиме счёта импульсов.

Для измерения энергетического распределения γ-лучей разработаны сцинтилляционные (анализируется амплитуда импульсов в анодной цепи ФЭУ), магнитные (в которых анализируется вторичное электронное излучение) и дифракционные (в которых анализируется дифракция γ-лучей на кристаллах) γ-спектрометры.

Для анализа β-спектров применяются β-спектрометры, измеряющие энергию электронов по их воздействию на вещество, либо спектрометры, пространственно разделяющие β-частицы, имеющие разные энергии. К приборам 1-ого типа относят спектрометры, функционирование которых основано на ионизации рабочего вещества спектрометра (ионизационная камера, сцинтилляционный детектор). Но они, обладая большой светосилой, не очень точно измеряют энергию β-частиц. К приборам 2-ого типа относятся спектрометры, в которых используются магнитные или электрические поля. Особенно просты и дают лучшее разрешение спектрометры с поперечным магнитным полем, когда электроны движутся по окружностям, радиусы которых пропорциональны импульсам электронов.

Для определения энергии α-частиц, испускаемых радиоактивными элементами, исследование тонкой структуры α-спектров и идентификации новых ядер по энергии α-излучения разработаны α-спектрометры. Функционирование α-спектрометров основано либо на ионизирующем действии α-частиц, либо на магнитном анализе прохождения α-частиц. Поскольку у α-частиц очень малый пробег в веществе (большие линейные потери энергии) приходится использовать очень тонкие источники, которые получают путем испарения солей или окислов исследуемых веществ в вакууме. Обычно производят не абсолютные измерения энергии - частиц, а сравнение энергии анализируемых- частиц с энергией-частиц, испускаемых веществом, спектр-излучения которого хорошо изучен. Чаще всего используют210Po, испускающий- частицы с Е=5,3006±0,0026МэВ.

Обычно рассматривают 6 групп дозиметрической и радиометрической аппаратуры. Iгруппа– это приборы для измерения мощности дозы-лучей и потока нейтронов. Как правило, датчиками в них являются ионизационные камеры, выбор типа которых зависит от мощности дозы излучения, либо газонаполненные или сцинтилляционные счетчики.IIгруппа– приборы с датчиками измерения потоков- и- частиц с загрязненных поверхностей. Для измерения характеристик потоков-частиц применяются датчики со сцинтиллятором изZnSAg, либо воздушные плоские многонитные пропорциональные счетчики. Для измерения характеристик- частиц применяются датчики в виде нескольких- счетчиков. Существуют приборы, служащие для сигнализации о превышении допустимых уровней загрязненности тела человека и специальной одежды- и- активными веществами.III группа– установки для измерения загрязненности воздуха активными газами и аэрозолями. Для этих целей обычно используют ионизационные камеры, которые помещают в замкнутый объем, наполненный загрязненным воздухом.- и- активные аэрозоли улавливают мембранными фильтрами при прокачивании через них воздуха, либо осаждают на мишени – электроде с помощью метода электроосаждения (электрофильтры).IV группа – радиометрические установки с датчиками в виде газовых и сцинтилляционных счетчиков, служащих для измерения абсолютной активности проб воды и пищевых продуктов.V группа– комплекты аппаратуры для измерения индивидуальных доз- лучей и нейтронов. Это фотопленки, малые ионизационные камеры, карманные дозиметры, позволяющие производить отсчеты в процессе работы (внутренний электрод камеры соединен с подвижной нитью, пропорциональное дозе отклонение которой наблюдают с помощью окулярной шкалы малогабаритного микроскопа).VI группа– это установки для измерения внешнего излучения от людей и измерение активности выдыхаемого воздуха, так называемые счетчики импульсов человека – СИЧ. Существуют большие полые сцинтилляционные счетчики и счетные спектрометрические установки с большими кристаллами изNaIдля регистрации внешних потоков излучения от людей (- и жесткое- излучение). В выдыхаемом человеком воздухе определяют, например, содержание радона и рассчитывают количество радия в организме.

Соседние файлы в папке лекции (Беларусь)