Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
клетка.docx
Скачиваний:
38
Добавлен:
17.05.2015
Размер:
174.42 Кб
Скачать
  1. Бота́ника (др.-греч. βοτανικός — «относящийся к растениям», отβοτάνη — «трава, растение») — наука о растениях, раздел биологии.

Морфология растений - изучает внешнее строение растений, исследует закономерности и обусловленность внешней формы растений.

Анатомия растений - исследует особенности закономерностей внутреннего строения растений.

Цитология растений - изучает строение клеток растений.

Гистохимия растений - с помощью микрохимических реакций выявляет и исследует вещества, находящиеся в растительной клетке.

Эмбриология растений - раздел ботаники, исследующий закономерности зарождения организма в первые этапы его развития.

Физиология растений - изучает жизнедеятельность растений: обмен веществ, рост, развитие и т.п.

Биохимия растений - исследует процессы химических превращений как химических соединений, входящих в состав самого организма, так и веществ, поступающих в него из окружающей среды.

Экология растений - изучает взаимоотношения растений и среды.

2)Организмы, которые способны синтезировать органические вещества, необходимые для жизнедеятельности, из неорганических соединений, принято называть автотрофами.  Автотрофные организмы образуют так называемую первичную продукцию - биомассу органического вещества, которая в дальнейшем утилизируется другими организмами. К автотрофам относятся некоторые бактерии и все без исключения виды зеленых растений.  Автотрофные организмы способны усваивать углекислый газ из воздуха и превращать его в сложные органические соединения. Таким образом автотрофы строят свое «тело» из неорганических соединений. Каскад биохимических реакций, конечным продуктом которых являются белки и другие органические вещества, необходимые для жизнедеятельности, требует значительных затрат энергии. По способу получения энергии автотрофы подразделяются на фотоавтотрофы и хемоавтотрофы.  Фотоавтотрофные бактерии используют энергию солнечных лучей при синтезе органических веществ из двуокиси углерода по типу фотосинтеза у растений. Важным компонентом уитоплазмы таких микробов являются пигменты: бактериопурпурин, бактериохлорин и др. Основная функция пигментов - поглощение и аккумуляция энергии солнечного света. Наиболее типичными представителями группы фотоавтотрофов являются цианобактерии, пурпурные и зеленые серные бактерии. 

Организмы, использующие для своего питания готовые органические соединения, принято называть гетеротрофными.  К гетеротрофным организмам относятся все животные и человек, а также некоторые паразитические растения и бактерии. Разделение организмов по типу питания на автотрофные и гетеротрофные весьма условно.  Некоторые автотрофы - фотосинтезирующие зеленые растения - могут усваивать небольшое количество органических соединений. Некоторые растения-хищники (росянка, пузырчатка) используют органические соединения для азотного питания, а углеродное питание осуществляется посредством фотосинтеза. Некоторые автотрофы нуждаются в витаминоподобных веществах.  В 1933 г. с помощью изотопного метода американские ученые подтвердили, что ярко выраженные гетеротрофы (грибы и бактерии) способны усваивать углерод, поглощая СО2. Для гетеротрофных бактерий источником углерода служат готовые органические соединения: сахара, спирты, молочная, лимонная и уксусная кислоты, а также воск, клетчатка и крахмал. Из микроорганизмов гетеротрофами являются возбудители брожения (спиртового, пропионово - кислого, молочно - кислого и маслянично - кислого), гнилостные и болезнетворные бактерии.  В зависимости от используемого субстрата, гетеротрофные микроорганизмы подразделяются на две обширные группы: мета- и паратрофы. Метатрофы используют органические соединения мертвых субстратов. В эту группу входят в основном гнилостные бактерии. Паратрофы используют органические соединения живых организмов. Именно эти микроорганизмы обычно вызывают инфекционные заболевания человека, животных и растений. 

3)Кристаллы в клетках растений

Кристаллы в клетках растений, кристаллические отложения в полостях или оболочках живых или отмерших клеток, состоящие главным образом из щавелевокислого Ca, кремнезёма — SiO2, реже — белков, каротинов и др. Встречаются: одиночные К., скопления мелких К. — «песок», сростки К. — друзы, игольчатые К. — стелоиды и рафиды. Некоторые К. присутствуют лишь в особых, более крупных клетках. К. могут заполнять клетки целиком, деформируя их. Кремнезём откладывается преимущественно в оболочках клеток, часто в кожице (хвощи, злаки). К. белка встречаются в ядрах, пластидах, алейроновых зёрнах, К. каротина — в хромопластах. Много К. скапливается в отмерших клетках листьев и коры. Форма и расположение К. специфичны для ряда растений, что может иметь значение для их систематики.

4) –

5)Кле́тка — элементарная единица строения и жизнедеятельности всехорганизмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил названиецитологии.

6) Клеточная теория строения организмов была сформирована в 1839 году немецким зоологом Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы. В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология,гистология и физиология. Основные положения клеточной теории не потеряли своей актуальности, однако со времени её создания были дополнены, и теперь она содержит такие утверждения:

  1. Клетка — элементарная единица строения, функционирования, размножения и развития всех живых организмов, вне клетки нет жизни.

  2. Клетка — целостная система, содержащая большое количество связанных друг с другом элементов —органелл.

  3. Клетки различных организмов похожи (гомологичны) по строению и основным свойствам и имеют общее происхождение.

  4. Увеличение количества клеток происходит путем их деления, после репликации их ДНК: клетка — от клетки.

  5. Многоклеточный организм — это новая система, сложный ансамбль из большого количества клеток, объединенных и интегрированных в системы тканей и органов, связанных между собой с помощью химических факторов: гуморальных и нервных.

  6. Клетки многоклеточных организмов тотипотентны — любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировке[1].

7)В растительной и животной клетке существуют общие органоиды, такие как ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Однако растительная клетка имеет существенные отличия от животной клетки.

Растительная клетка как и животная, окружена цитоплазматической мембраной, но кроме неё ограничена толстой клеточной стенкой, состоящей из целлюлозы, которой нет у животных клеток.

Накапливающие клеточный сок вакуоли есть как в растительных, так и в животных клетках, но в животных клетках они выражены слабо.

Преобладание синтетических процессов над процессами освобождения энергии — это одна из наиболее характерных особенностей обмена веществ растений. Первичный синтез углеводов из неорганических веществ осуществляется в пластидах. Так, в животных клетках, в отличие от растительных, отсутствуют следующие пластиды: хлоропласты (отвечают за реакцию фотосинтеза), лейкопласты (отвечают за накопление крахмала) и хромопласты (придают окраску плодам и цветам растений)

  1. В растительной клетке присутствует прочная и толстая клеточная стенка из целлюлозы

  2. В растительной клетке развита сеть вакуолей, в животной клетке она развита слабо

  3. Растительная клетка содержит особые органоиды — пластиды (а именно, хлоропласты, лейкопласты и хромопласты), а животная клетка их не содержит.