Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРЕДМЕТ И СТРУКТУРА МЕТОДОЛОГИИ.doc
Скачиваний:
31
Добавлен:
15.05.2015
Размер:
119.3 Кб
Скачать

Предмет и структура методологии

«Методология (от «метод» и «логия») – учение о структуре, логической организации, методах и средствах деятельности» .

«Методология – система принципов и способов организации и построения теоретической и практической деятельности, а также учение об этой системе» .

Методология – это учение об организации деятельности. Такое определение однозначно детерминирует и предмет методологии – организация деятельности. Этим определением мы и пользуемся.

В то же время, необходимо отметить, что, наверное, не всякая деятельность нуждается в организации, в применении методологии. Как известно, человеческая деятельность может разделяться на деятельность репродуктивную и продуктивную (см., например, [12]).

Репродуктивная деятельность является слепком, копией с деятельности другого человека, либо копией своей собственной деятельности, освоенной в предшествующем опыте. Такая деятельность, как, например, однообразная деятельность токаря-операционника в любом механическом цеху, или рутинная повседневная деятельность учителя – «урокодателя» на уровне раз и навсегда освоенных технологий в принципе уже организована (самоорганизована) и, очевидно, в применении методологии не нуждается.

Другое дело – продуктивная деятельность, направленная на получение объективно нового[4] или субъективно нового результата. Любая научно-исследовательская деятельность, если она осуществляется более или менее грамотно, по определению всегда направлена на объективно новый результат. Инновационная деятельность специалиста-практика может быть направлена как на объективно новый, так и на субъективно новый (для данного специалиста или для данного предприятия, учреждения) результат. Учебная деятельность всегда направлена на субъективно новый (для каждого конкретного обучающегося) результат. Вот в случае продуктивной деятельности и возникает необходимость ее организации, то есть возникает необходимость применения методологии.

Если методологию мы рассматриваем как учение об организации деятельности, то, естественно, необходимо рассмотреть содержание понятия «организация». В соответствии с определением, данным в [42], организация – 1) внутренняя упорядоченность, согласованность взаимодействия более или менее дифференцированных и автономных частей целого, обусловленная его строением; 2) совокупность процессов или действий, ведущих к образованию и совершенствованию взаимосвязей между частями целого; 3) объединение людей, совместно реализующих некоторую программу или цель и действующих на основе определенных процедур и правил – см. Рис. 1.

Индукция - движение мысли от единичного (опыта, фактов) к общему (их обобщению в выводах) идедукция - восхождение процесса познания от общего к единичному. Это противоположные, взаимно дополняющие ходы мысли. Индуктивные обобщения обычно рассматривают как опытные истины (эмпирические законы). Из видов индуктивных обобщений выделяют индукцию популярную, неполную, полную, научную и математическую. В логике рассматриваются также индуктивные методы установления причинных связей. К ним относятся методы: единственного сходства, единственного различия, сходства и различия, сопутствующих изменений и метод остатков.

    Характерная особенность дедукции заключается в том, что от истинных посылок она всегда ведет к истинному, достоверному заключению, а не к вероятностному. Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью чистого рассуждения, без обращения к опыту, интуиции, здравому смыслу и т.п.

     Гипотетико-дедуктивный метод - метод научного познания, сущность которого заключается в создании системы дедуктивно связанных между собой гипотез, из которых в конечном счете выводятся утверждения об эмпирических фактах. Тем самым этот метод основан на выведении (дедукции) заключений из гипотез и других посылок, истинностное значение которых неизвестно. А это значит, что заключение, полученное на основе данного метода, неизбежно будет иметь вероятностный характер.

     Общая структура гипотетико-дедуктивного метода:

а) ознакомление с фактическим материалом, требующим теоретического объяснения и попытка такового с помощью уже существующих теорий и законов. Если нет, то:

б) выдвижение догадки (гипотезы, предположения) о причинах и закономерностях данных явлений с помощью разнообразных логических приемов;

в) оценка основательности и серьезности предположений и отбор из множества из них наиболее вероятного;

г) выведение из гипотезы (обычно дедуктивным путем) следствий с уточнением ее содержания;

д) экспериментальная проверка выведенных из гипотезы следствий. Разновидностью гипотетико-дедуктивного метода можно считать математическую гипотезу, где в качестве гипотез выступают некоторые уравнения, предоставляющие модификацию ранее известных и проверенных состояний. Изменяя последние, составляют новое уравнение, выражающее гипотезу, которая относится к новым явлениям. Гипотетико-дедуктивный метод является не столько методом открытия, сколько способом построения и обоснования научного знания, поскольку он показывает каким именно путем можно прийти к новой гипотезе.

 

     АБДУКЦИЯ  - выведение понятия из того категориального ряда, в котором оно закреплено традицией, и перенесение его в другой ряд или множественные, расходящиеся ряды понятий.

    Этот термин был введен  Чарлзом Пирсом для обозначения логики гипотетического мышления.  Например,  название или метод научной дисциплины "похищается" у определенной предметной области и переносится на другую .  Абдукция  перекликается с метафорой, перенесением значения по сходству; но это не поэтический, а логический прием, основанный на расширительной работе с теоретическим понятием.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результа­там-следствиям.

Умозаключение по дедукции строится по следующей схеме:

все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления кон­кретного содержания общепринятых посылок.

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследова­тель пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

Дедукция в научном познании. Немного об истории дедуктивного познания. Искусственные и естественные языки.

В отличие от индукции, похожей на дырявую трубку, по которой течет и теряется истинность, к дедукции, как уже отмечалось выше, обычно предъявляется требование полного переноса истинности от посылок к заключениям. В этом смысле дедукция всегда была символом наиболее строгих и обоснованных методов научного мышления. По аналогии с индукцией, о дедукции можно было бы говорить по крайней мере в двух основных смыслах - как о переходе от общего к частному (назовем этот вид дедукции дедукцией-1) и как о достоверном выводе (дедукция-2). Не всегда эти два понимания дедукции совпадают (случай совпадения видов дедукции как перехода от общего к частному и как достоверного вывода можно называть дедукцией -12), в связи с чем можно говорить о дедукции-1 - дедукции, являющейся переходом от общего к частному, но не представляющей из себя достоверного вывода, и о дедукции-2 - достоверном выводе, который, тем не менее, не является переходом от общего к частному.

По нашему мнению, однако, отличие дедукции от индукции во многом выражается сегодня в степени разработанности различных разделов логики. Индукция, как мы видели выше, таит в себе еще много неясного и проблематичного, это как бы менее разработанные, но активно развивающиеся сегодня разделы логики. Дедуктивная логика в этом смысле - это скорее наиболее разработанная часть логики вообще, которая исторически оказалась связанной с более простыми и базовыми логическими средствами мышления. С этой точки зрения мы будем придерживаться в этой главе не столько классификационного описания видов дедукции, что было бы более уместно в области, где еще отсутствуют глубокие теоретические обобщения, но попытаемся представить общий обзор дедуктивных методов познания как некоторых интегрированных систем мышления.

Основы дедуктивной логики были заложены еще в трудах древнегреческих философов и математиков. Здесь можно назвать такие славные имена, как имена Пифагора и Платона, Аристотеля и Евклида. Считается, что Пифагор одним из первых стал рассуждать в стиле доказательства того или иного утверждения, а не простого его провозглашения. В работах Парменида, Платона и Аристотеля сложились представления об основных законах правильного мышления. Древнегреческий философ Парменид впервые высказал ту замечательную мысль, что в основании подлинно научного мышления лежит некое неизменное начало ("единое"), которое продолжает сохраняться неизменным, как бы не менялась точка зрения мыслителя. Платон сравнивает единое со светом мысли, который продолжает пребывать неизменным, пока есть сама мысль. В более строгой и конкретной форме эта идея получает свое выражение в формулировке основных законов логики у Аристотеля. Аристотель считается по праву основателем логики как дедуктивной науки. Он впервые систематизирует основные приемы правильного мышления, обобщая достижения современных ему древнегреческих математиков. В работах Евклида применение этих приемов и законов к математическим наукам достигает высочайшего уровня, который становится идеалом дедуктивного мышления на века и тысячелетия в европейской культуре. Позднее формулировки дедуктивной логики все более оттачиваются, детализируются у стоиков, в средневековой схоластике. Но это время практически не прибавляет ничего принципиально нового к сложившейся у Аристотеля и Евклида системе дедуктивного метода. И лишь с возникновением новой науки в 16-17 веках вновь начинается переосмысление и развитие античного наследия. Французский философ и математик Рене Декарт выдвигает понятие переменной, формулирует идею и правила дедуктивного метода как общего метода решения уравнений - суждений, содержащих переменные. Декарт подчеркивает значение очевидности (L-статуса) посылок и правил вывода в дедуктивных умозаключениях. Немецкий философ Готфрид Лейбниц выдвигает идею универсального дедуктивного метода, на основе которого мыслители были бы в состоянии прекратить бесплодные споры и перейти к строгому вычислению истинности или ложности выдвигаемых ими положений. В работах немецкого философа Иммануила Канта провозглашается замысел построения некоторой "трансцендентальной дедукции", способной выходить за границы законов формальной логики. Наконец, в конце 19 века в работах английского ученого Джорджа Буля строго формулируется идея логической переменной и логических уравнений, постепенно оформляется новая структура, составляющая алгебру мысли и получившая название "булевой алгебры" по имени своего первооткрывателя. В 20-м веке дедуктивная логика становится разделом математики и начинает называться "математической логикой". Основные идеи и методы дедуктивного подхода получают совершенно строгое выражение средствами языка математики. С этих пор начинается бурный рост математической логики как нового направления математического знания, получившего название "метаматематика". Такое бурное и успешное развитие дедуктивной логики привело к формулировке понятия формальной дедуктивной (аксиоматической) системы, к рассмотрению структуры которой мы ниже вкратце и обратимся. Дедуктивная система - это область мышления и языка, в высокой степени обработанная средствами дедуктивной логики и получающая в связи с этим некоторый законченный и организованный вид.

В первую очередь формальная дедуктивная система представляет из себя некоторый искусственный язык, специально приспособленный для описания определенной математической структуры. Вкратце мы уже касались некоторых идей, связанных с дедуктивными системами, в параграфе первой главы первого раздела, посвященного логическим теориям, описывающим структуры. Здесь будет сделан еще один шаг в направлении более подробного описания средств современной дедуктивной логики.

Очень часто учащихся и неспециалистов вводит в заблуждение термин "формальный" в применении к логическим языкам дедуктивной логики. Сегодня логика, как и математика вообще, во многом строится с применением множества специальных символов ("значков"), которые кажутся бессмысленной абракадаброй несведущему человеку. Но в этом случае с равным успехом формальным можно называть, например, и язык нотной записи музыкальных произведений, который не менее понятен для непосвященного. Поэтому само по себе использование специального языка еще не означает чего-то обязательно "формального". Необходимо специально оговориться, в каком смысле искусственные языки логики и математики считаются формальными.

Под формальным можно понимать, по крайней мере, две вещи: во-первых, степень выражения в языковых средствах предмета языка (того, о чем говорит язык), во-вторых, степень общего, универсального, выражаемого языком. С первой точки зрения, обычные языки, например, русский, английский могут быть названы более формальными, чем язык математики. В самом деле, математический язык специально строится так, чтобы в структуре символов этого языка уже выражался предмет языка. Поэтому в математических языках форма и содержание языка гораздо более подобны друг другу, чем в языках обычных, и в этом смысле математические языки гораздо более содержательны. Вот почему можно порой работать с математическими знаками, не понимая их смысла (как это делается в компьютерах). Ведь уже в самой структуре математического знака заложен до некоторой степени закон его содержания. В разговорных языках на форму знаков (например, слов, букв) гораздо больше влияет природа пользователя этого языка, например, устройство гортани человека, позволяющей издавать фиксированный набор звуков. Поэтому в ненаучных языках больше разрыв между формой и содержанием знака, и в этом смысле они более формальны.

Во втором смысле, при понимании формальности как универсальности, конечно, более формальны математические языки. Они создаются для выражения очень общих и универсальных понятий и законов, в то время как обычный язык во многом порожден жизнью человека в близком ему опыте.

Искусственные языки науки и естественный язык взаимно дополняют друг друга. Искусственные языки более универсальны в своей области и обладают формой, более подобной своему содержанию. Однако искусственные языки практически ничего не могут сказать вне сферы своей компетенции, в то время как естественный язык способен сказать понемногу обо всем. Не надо думать, что можно было бы обойтись без искусственных языков, и их использование - результат лишь некоторого удобства. Есть много вещей, о которых либо вообще нельзя сказать, либо удается сказать очень приблизительно и неадекватно средствами естественного языка. В этом смысле овладение тем или иным искусственным языком - языком физики, математики, логики - оказывается во многом процессом приобретения нового органа понимания и выражения, этот момент нельзя недооценивать особенно в современном научном познании, насыщенном сложнейшими искусственными языковыми системами. Если различные естественные языки можно было бы называть синтаксическими (синтаксис - правила построения знаков языка), т.к. они различаются не столько смыслами, сколько звуковыми и письменными оболочками этих смыслов, в связи с чем давно возможен достаточно хороший перевод между такими языками; то разнообразие искусственных языков математики и других наук представляет из себя пример семейства семантических языков (семантика - наука об отношении знаков и их содержания), существенно различающихся системами выражаемых ими смыслов. Для перевода таких языков между собой необходим некоторый семантический гиперязык, способный объединить в себе смысловые пространства и подобные им знаковые формы различных искусственных языков. В наибольшей мере такой язык присутствует в современной математике, но, по-видимому, и его ресурсов пока существенно не хватает для переводов с языка одной частной науки на язык другой. Создание такого гиперязыка - это во многом проблема создания более универсального смысла, который еще отсутствует в современной науке. Другим возможным источником синтетического гиперязыка является философия, но до сих пор она слишком мало взаимодействовала с искусственными языками других наук, пытаясь максимально обходиться средствами естественного языка.

  1. Все люди смертны.

  2. Сократ— человек.

  3. Следовательно, Сократ смертен.

Как развить дедукцию?

Стремясь к саморазвитию, человек непременно приходит к необходимости развивать дедукцию. Развить дедуктивное мышление, как бы банально это не звучало, помогают различные головоломки и задачи на логику. Например, у нас на сайте есть замечательная игра под названием «Дедукция». С ее помощью можно не только тренировать дедукцию, но и просто приятно провести досуг.

Есть несколько советов тем, кто серьезно заинтересован в развитии дедукции:

Изучая какой-либо материал, старайтесь заинтересоваться им по-настоящему, углубляясь во все тонкости изучаемого предмета. Для этого найдите способы возбудить любопытство к изучаемому предмету, которое и толкнет вас к его глубинному изучению.

Углубляйте имеющиеся знания в различных областях. Изучая те или иные предметы поверхностно, невозможно приучить свой мозг к глубинному анализу. Поэтому старайтесь постигать самые азы тех материалов, за изучение которых вы беретесь.

Расширяйте кругозор. Невозможно развить мышление, имея хорошие знания только в одной области. Важно обращаться к знаниям из самых разных областей — науки, культуры, музыки, искусства и многих других. В этом вам помогут любые источники знаний — справочники и энциклопедии, учебные материалы, общеобразовательные книги.

Гибкость мышления — важное условие для развития дедукции. Как бы трудно это ни было вначале, старайтесь находить иные, нежели привычные, пути решения задач. Сумев рассмотреть предмет (ситуацию, событие, слова) с разных ракурсов, вы сможете научиться находить наилучшие решения для поставленных задач.

Старайтесь критически подходить даже к привычным ситуациям и учитесь самостоятельно находить оптимальный выход, не полагаясь на других.

Совмещайте 2 метода мышления — дедукцию и индукцию (умозаключение от частного к общему, противоположное дедукции).

Пожалуй, самым ярким и доступным примером дедукции является мышление уже ранее упомянутого нами Шерлока Холмса. Беря за основу общее — совершенное преступление со всеми участниками события, — он постепенно переходит к частному — каждому человеку, событиям, с ним связанным, рассуждая, строя логические цепочки его поступков, поведения, мотивов, тем самым устанавливая его причастность или непричастность к преступлению. Таким образом, логическими умозаключениями, он находит преступника, давая неопровержимые доказательства его вины.

Методы эмпирического исследования.

1. Наблюдение - целенаправленное пассивное изучение предметов, опирающееся в основном на данные органов чувств. В ходе наблюдения мы получаем знания не только о внешних сторонах объекта познания, но и - в качестве конечной цели - о его существенных свойствах и отношениях.

      Наблюдение может быть непосредственным и опосредованным различными приборами и другими техническими устройствами. По мере развития науки оно становится все более сложным и опосредованным. Основные требования к научному наблюдению: однозначность замысла (что именно наблюдается); возможность контроля путем либо повторного наблюдения, либо с помощью других методов (например, эксперимента). Важным моментом наблюдения является интерпретация его результатов - расшифровка показаний приборов и т.п.

      2. Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение исследуемого объекта или его воспроизведение в специально созданных и контролируемых условиях, определяемых целями эксперимента. В его ходе изучаемый объект изолируется от влияния побочных, затемняющих его сущность обстоятельств и представляется в "чистом виде".

      Основные особенности эксперимента: а) более активное (чем при наблюдении) отношение к объекту исследования, вплоть до его изменения и преобразования; б) возможность контроля за поведением объекта и проверки результатов; в) многократная воспроизводимость изучаемого объекта по желанию исследователя; г) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях.

      Виды (типы) экспериментов весьма разнообразны. Так, по своим функциям выделяют исследовательские (поисковые), проверочные (контрольные), воспроизводящие эксперименты. По характеру объектов различают физические, химические, биологические, социальные и т.п. Существуют эксперименты качественные и количественные. Широкое распространение в современной науке получил мысленный эксперимент - система мыслительных процедур, проводимых над идеализированными объектами.

      3. Сравнение - познавательная операция, выявляющая сходство или различие объектов (либо ступеней развития одного и того же объекта), т.е. их тождество и различия. Оно имеет смысл только в совокупности однородных предметов, образующих класс. Сравнение предметов в классе осуществляется по признакам, существенным для данного рассмотрения. При этом предметы, сравниваемые по одному признаку, могут быть несравнимы по другому.

      Сравнение является основой такого логического приема, как аналогия (см. далее), и служит исходным пунктом сравнительно-исторического метода. Его суть - выявление общего и особенного в познании различных ступеней (периодов, фаз) развития одного и того же явления или разных сосуществующих явлений.

      4. Описание - познавательная операция, состоящая в фиксировании результатов опыта (наблюдения или эксперимента) с помощью определенных систем обозначения, принятых в науке.

      5. Измерение - совокупность действий, выполняемых при помощи определенных средств с целью нахождения числового значения измеряемой величины в принятых единицах измерения.

      Следует подчеркнуть, что методы эмпирического исследования никогда не реализуются "вслепую", а всегда "теоретически нагружены", направляются определенными концептуальными идеями.