Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
история теплоэнергетики 2011.doc
Скачиваний:
248
Добавлен:
15.05.2015
Размер:
512.51 Кб
Скачать

Гидравлический двигатель

Водяное колесо могло работать только при малых напорах воды, которыми обладали равнинные реки. Между тем громадные запасы гидравлической энергии были заключены в водяных потоках со средним (от 8 до 25 метров) и высоким (свыше 25 метров) напором воды. В этих условиях водяное колесо вообще не могло быть установлено. Единственная возможность для освоения громадной энергии таких водяных потоков заключалась в создании гидравлического двигателя, принципиально отличного от водяного колеса. Водяное колесо приводилось во вращение действием веса воды или ударами струи в лопатки. Но можно было использовать и другие физические явления – силу реакции потока воды на лопасти колеса [2].

Практически сила реакции, создаваемой потоком воды на лопасти рабочего колеса, нашла свое воплощение в так называемом сегнеровом колесе (физик Сегнер). Однако недостаточное понимание сущности физических процессов в таком двигателе не позволили Сегнеру в дальнейшем его усовершенствовать.

Тем не менее в несовершенном реактивном двигателе Сегнера Л.Эйлер усмотрел большие практические возможности.

Уже в своем первом докладе, сделанном в Берлинской академии наук (1750 год), Эйлер дал анализ процессов и указал, что низкий КПД получается вследствие потерь энергии при входе и выходе воды из колеса.

В последующих докладах (1751-1754 годы) были показаны преимущества Сегнерова колеса перед другими гидравлическими машинами и изложена теория водяного реактивного двигателя.

На основе уравнений сохранения количества движения он вывел уравнение работы гидравлической турбины. Идеи Эйлера о рациональной конструкции гидравлических турбин получили свое окончательное выражение в его предложении делить гидравлическую машину нового типа на две части – неподвижную и вращающуюся. Через неподвижный направляющий аппарат вода поступает во вращающееся колесо, являющееся рабочим органом машины [3].

В таком виде гидравлический двигатель представлял собой переходную конструкцию от сегнерова колеса к гидравлической турбине. Несмотря на полную научную и техническую обоснованность конструкции водяной турбины, предложенной Эйлером, она в XVIII веке по экономическим причинам не вошла в практику. Лишь в 40-х годах XX века в Швейцарии на родине Эйлера была построена действующая модель его турбины (ее КПД составлял 71 % при частоте вращения 180 об/мин.).

Гидравлические турбины разрабатывались и внедрялись в промышленном производстве Франции. Одним из первых проектов, получившим поощрительную премию, был двигатель профессора К.Бюрдена (1822 год), установленный на мукомольной мельнице и названный гидравлической турбиной [2].

Гидроэнергетика и теплоэнергетика

Водяное колесо являлось основной энергетической базой промышленного производства примерно в течение с IV по XVIII века. Во второй половине XVIII века гидроэнергетика утратила свое ведущее значение, уступив его теплоэнергетике. Новый подъем гидроэнергетики и переход ее на качественно новую ступень был сделан в самом конце XIX века в связи с решением проблемы передачи энергии на большие расстояния.

Ограниченность потенциала водяного колеса прежде всего сказалась в металлургии и рудном деле.

Для получения железа люди добывали руду, дробили ее в ступах, плавили в домнах, нагнетая в нее воздух, а полученное железо проковывали под молотами. Первоначально все это делалось за счет мускульной силы человека. Но так как для привода не требовалось специальных знаний, человек мог заменить себя более мощным двигателем – водяным колесом. Это позволило увеличить размеры агрегатов.

Теперь мощность молота определялась только мощностью водяного потока. Но в горно-рудном деле кроме энергии необходимыми элементами производства являлись руда и горючее (дрова). Природа редко сосредотачивала все это в одном месте. Поскольку водная энергия не транспортировалась, то доставка руды и топлива к месту источника водяной энергии становится элементом производства, в значительной степени определяющим себестоимость продукции. Так энергетика водяного колеса начинала приходить в конфликт с вызванными ею же новыми производственными возможностями.

Наиболее остро кризис водяного колеса сказался в горно-рудном производстве. Действительно, если отсутствие в одном пункте руды и леса означало лишь удорожание продукции или экономическую нецелесообразность производства металла, то отсутствие энергии делало невозможным его производство. Истощив запасы поверхностных руд, человек вынужден был все глубже проникать в недра земли. Вместе с этим росло потребление энергии на откачивания воды из шахт. Все труднее становилось найти счастливое совпадение в одном месте рудного месторождения и достаточно мощного водяного потока.

Главная ограниченность энергетики водяного колеса заключалась в том, что для его работы необходимы водные ресурсы с определенными параметрами (скорость потока воды, возможность ее подъема при использовании плотин и т.п). Поэтому применение водяного колеса имело чисто локальный характер. Так возникла потребность в новой энергетике. Но водяное колесо, потеряв в XVTII веке свое значение как основы энергетики, сравнительно медленно уступало свои позиции. Так, например, в России к 1917 году было установлено 46000 водяных колес. Их суммарная мощность достигала 40% всей установленной в стране мощности [2].