Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лаб №1-качение шаров.doc
Скачиваний:
8
Добавлен:
03.05.2015
Размер:
279.55 Кб
Скачать

2. Сцепление и сопротивление при качении тел по твёрдым поверхностям

2.1. Значение (модуль) силы сцепления при качении определяется формулой:

, (1)

где N – нормальная реакция;

- безразмерный коэффициент сцепления.

Отметим, что формула (1) похожа на формулу закона Амонтона-Кулона для силы сухого трения при скольжении тел по твёрдым поверхностям. Однако физический смысл формулы (1) иной, т. к. она характеризует силу Fсц, обеспечивающую полное сцепление соприкасающихся точек катящегося тела и опорной поверхности.

Сцепление тел вообще объясняется силами электрического взаимодействия и зависит от типа вещества, качества обработки поверхностей, адсорбционных слоёв на поверхностях и т. д. Исследование свойств поверхностей, обеспечивающих сцепление при качении тел, в настоящее время представляет одну из актуальных научно-технических проблем. При этом ставится цель повышения коэффициента сцепления .

Силы Fсц всегда направлены по касательной к опорной поверхности, однако направления векторов этих сил зависят от способа качения тел. В зависимости от способа качения – необходимо различать ведущие и ведомые катящиеся тела (см. Приложение). У ведущих тел сила Fсц направлена в сторону вектора ускорения центра масс, у ведомых тел – сила Fсц направлена противоположно.

Из формулы (1) следует, что величина силы Fсц зависит от нормальной реакции N. При N0 сцепление исчезает. В условиях земной гравитации сцепление обеспечивается силой тяжести, "прижимающей" катящееся тело к опорной поверхности. Однако при качении по наклонным поверхностям нормальная реакция уменьшается. В результате, при некотором предельном угле наклона поверхности нормальное качение тела, как показывает опыт, прекращается и начинается скольжение.

Это явление описывается теоретически на основе законов динамики качения тел. Расчёты показывают, что предельный угол наклона, при котором прекращается нормальное качение, зависит от коэффициента сцепления , а также – от формы тела, определяющей его момент инерции.

Упрощённое решение такой задачи без учёта сопротивления качению для тела, совершающего при скатывании плоское движение под действием силы тяжести и силы сцепления, имеет вид:

(2)

Здесь: - угол наклона поверхности;

Ip – момент инерции тела относительно мгновенной оси;

Ic – момент инерции тела относительно оси, проходящей через центр масс и параллельной мгновенной оси.

Формула (2) получается с помощью двух уравнений (7а) и (7б) без учёта величины Ms (см. раздел 3) методом их почленного деления при подстановке выражения (1) для силы Fсц.

Если известен коэффициент , тогда из (2) можно вычислить предельный угол наклона для скатывания тела данной формы. Кроме того, используя (2), можно находить коэффициенты  из опыта, устанавливая на наклонной поверхности исследуемое тело и увеличивая угол наклона до появления скольжения.

2.2. При качении тел в обычных земных условиях источниками сопротивления являются окружающая среда (воздух) и опорные поверхности.

Однако, в случае движения отдельных тел (например, обруч, диск, шар) небольших размеров с невысокими скоростями сопротивлением воздуха можно пренебречь.

Рассмотрим, чем объясняется сопротивление при нормальном качении (без скольжения) тел по твёрдым поверхностям. При нормальном качении по неподвижным поверхностям – тело в точках контакта "сцепляется" с поверхностью из-за действия сил сцепления. Эти точки тела на мгновение теряют свои скорости, т. е. силы сцепления Fсц оказываются приложенными к телу в неподвижных точках – м. ц. с.

Силы, приложенные к неподвижным точкам, работу не выполняют. Работа сил в таком случае равна нулю. Это следует из определения физического содержания понятия: - работа силы. Работой силы называется мера действия силы по преобразованию энергии из одной формы в другую и равная скалярному произведению вектора силы и вектора перемещения той точки, где данная сила приложена. Величина элементарной работы силына перемещении точки приложенияопределяется формулой:

, (3)

где - угол между векторамии.

Напомним: а) если к движущимся точкам (к системе точек) приложены потенциальные силы, тогда кинетическая энергия преобразуется в потенциальную энергию тех же точек (или, наоборот, потенциальная – в кинетическую), т. е. механическая энергия точек сохраняется при условии, что работу на их перемещении выполняют только потенциальные силы (закон сохранения механической энергии); б) если к движущимся точкам (к системе точек) приложены непотенциальные (диссипативные) силы (силы трения и сопротивления), тогда кинетическая энергия преобразуется в другие формы энергии (тепловую энергию, энергию излучения и пр.), и механическая энергия заданной системы не сохраняется.

Работа сил сцепления, приложенных к неподвижным точкам катящихся тел, согласно формуле (3) равна нулю. Следовательно, наличие сил сцепления не изменяет механическую энергию движущихся тел, т. е. эти силы нельзя отнести к разряду непотенциальных сил. Действие сил сцепления сводится лишь к тому, что они обеспечивают появление мгновенной оси вращения, относительно которой происходит поворот катящихся тел.

Опыт, однако, показывает, что при качении существует сопротивление, причиной которого являются не силы сцепления, а взаимные деформации поверхностей в точках контакта. Деформация опорной поверхности происходит в результате действия силы веса катящегося тела. Нормальная реакция вызывает деформацию поверхности тела. При этом опорная поверхность немного "продавливается", поверхность тела "сплющивается", и на поверхности тела в зоне контакта возникает плоская площадка. Размеры таких деформаций обычно невелики, порядка (10-1 – 10-3) см, и зависят от свойств материалов и качества обработки поверхностей.

Появление деформаций в зоне контакта ведёт к тому, что при качении тела линия действия нормальной реакции смещается в сторону движения и не проходит через центр масс тела.

На рис. 1 показаны схемы векторов сил тяжести и нормальной реакции для случаев качения тел по горизонтальной и наклонной поверхностям. Показаны также вектор скорости центра масс Vс и направление поворота (изогнутой стрелкой с обозначением ).

Из схем на рис. 1 видно, что при движении по горизонтали силы тяжести G и нормальной реакции N образуют пару сил; при движении по наклонной поверхности пару сил образуют нормальная составляющая силы тяжести GN и нормальная реакция N. Значения GN и N при качении по наклонной поверхности равны . Расстояние между линиями действия сил пары обозначено .

Схемы векторов сил ипри качении тел

Рис 1.

Очевидно, момент указанной пары сил "препятствует" повороту тел и, согласно законам динамики, уменьшает угловую скорость и скорость центра масс Vc при качении. Момент этой пары сил называется моментом сопротивления качению, и его величина определяется формулой:

, (4)

где - имеет в данном случае специальное название: коэффициент сопротивления качению. В технических справочниках значение этого коэффициента принято измерять сотыми долями метра, т. е. размерность [ ] = см.

Величина элементарной работы dAs момента сопротивления качению определяется формулой:

, (5)

где d - элементарный угол поворота катящегося тела.

С помощью формулы (5) вычисляются потери кинетической энергии при нормальном качении тел. Физическая причина таких потерь заключается в том, что кинетическая энергия катящегося тела преобразуется в энергию деформации поверхностей в точках контакта.