Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
в54-59.docx
Скачиваний:
43
Добавлен:
20.04.2015
Размер:
108.07 Кб
Скачать

54. Приготовление смесей порошков карбидов с кобальтом. Опишите способы приготовления, процессы протекающие в шаровой мельнице, режимы приготовления смесей.

Происходящие при приготовлении смеси (смешивании) процессы сводятся, в основном, к разрушению конгломератов и дроблению зерен карбидов, разрушению конгломератов и измельчению частиц кобальта и смешиванию частиц карбидов и кобальта между собой. При мокром размоле порошка карбида вольфрама может произойти некоторое обезуглероживание, в результате взаимодействия активной поверхности мелкодисперсных частиц с кисло­родом атмосферы или жидкости, применяемой при размоле. При размоле в воде потери углерода могут составлять до 0,2 %. Даже при размоле в этиловом спирте наблюдали потерю углерода, составлявшую 0,06-0,08 % при продолжительности размола в течении 4 суток.

Сплав, полученный при смешивании без размола или с предварительным мокрым размолом только порошка карбида вольфрама в течение 24 ч, обладает высокой пористостью, а сплав из смеси, полученной также смешиванием без размола, но с предварительным мокрым размолом порошка кобальта в течение 48 ч, был несравненно плотнее и не отличался по пористости от сплава, полученного по обычно принятой технологии (совместным мокрым размолом в течение 48 ч).

Весьма важным процессом при изготовлении смесей мокрым размолом в шаровых мельницах является изменение физического состояния частиц порошка кобальта. Помимо уменьшения размера, происходит переход из ГЦК () в ГПУ- модификацию (), возрастает дефектность модификации.

Уже на основании указанных фактов можно сделать вывод, что экспериментальные данные показывают, что при приготовлении смеси основное значение имеет просто статистически равномерное распределение частиц карбида и кобальта в смеси. В последнее время был получен новый экспериментальный материал о характере смеси, подтверждающий этот вывод. Электронно-микроскопическое исследование, показало, что частицы кобальта и карбида в смеси лишь механически перемешаны и только отдельные наиболее мелкие зерна карбида внедрены в более крупные агломераты кобальта.

Хотя основная часть кобальта и находится в смеси в виде металличе­ских частиц, по размерам, близким к частицам карбида, важным момен­том процесса размола является образование на поверхности зерен карбида пленки из частиц оксида кобальта (Со3О4), которая имеется на поверхности зерен исходного порошка кобальта и превращается под влиянием размола и пластической деформации кобальта в весьма мелкие частицы (300 Å). Эта пленка оксида кобальта при спекании смеси превращается в пленку металлического кобальта, наличие которой на частицах карбида способствует их перераспределению в первую очередь на начальных стадиях спекания после появления жидкой фазы.

Значение совместного размола особенно велико при получении сплавов большинства промышленных марок с относительно низким содержанием кобальта, когда требуется распределить небольшие количества кобальта среди основной массы карбида.

Условия размола оказывают влияние и на механические свойства сплавов. При интенсивном и длительном размоле, приводящем к значительному уменьшению зернистости карбида вольфрама в сплаве, прочность его может несколько возрасти за счёт уменьшения пористости после спекания.

Режимы приготовления смесей.

Технологические режимы приготовления твердосплавных смесей и их влияние на качество сплавов подробно рассмотрено в монографии В.И. Третьякова. Там же указывается на целесообразность применения наиболее высоких скоростей вращения. С повышением числа оборотов барабана, повышается эффективность размола, так как за один и тот же период времени число перемещений шаров соответственно возрастает.

Е.И.Головин, используя барабан с прозрачными стенками, получил дополнительные данные по вопросу влияния скорости вращения барабана. Он установил, что при конкретных условиях размола, на новой мельнице режим перекатывания шаров сохраняется даже при расчетной критической скорости вращения и лишь при больших скоростях начинается свободное падение шаров. Форма устаревшей конструкции размольного барабана с отношением длины к диаметру равным 1,8 малоэффективна и не полностью использует энергетические возможности, во многих случаях не позволяя получать смесь нужной дисперсности.

Анализ кинетики движения шаров позволил выявить следующие области применения режимов измельчения. Для сухого и мокрого смешения: скольжение с раскачиванием; мокрое измельчение с низкой энергией размольных тел – перекатывание; мокрое измельчение с высокой энергией размольных тел – перекатывание с частичным подбрасыванием; сухой размол хрупких материалов – подбрасывание. На установление тех или иных режимов и их границ в зависимости от скорости вращения влияет заполнение мельницы размольными телами, среда размола, коэффициент трения и др. факторы. Для мокрого размола выгодно применять режимы перекатывания в верхних границах и частичного подбрасывания, как наи­более энергоемкие и более производительные. Режим частичного подбрасывания, как переходный, характеризуется наличием частичного полета размольных тел наружных слоев, что приводит к уменьшению пути ска­тывания и увеличению соударений при встрече с основной массой.

Созданная автором скоростная мельница объемом 0,160 м3 (рис. 7.1), диаметром 590 мм, длиной 590 мм, загрузкой размольных тел ~ 700 кг, смеси 200 кг, скорость вращения 90...100 % вместо 60 % от критической, применяемой ранее, с охлаждением водой, позволила повысить произво­дительность мельницы в 2–2,5 раза, в зависимости от марки сплава, благодаря применению режима измельчения с частичным подбрасыванием. Такой режим, кроме использования высокой энергии размольных тел, включает оптимальное заполнение барабана пульпой (смесь + жидкость).

Рис. 7.1. Барабанная мельница мокрого размола смесей порошков карбидов с кобальтом:

1 – барабан; 2 – загрузочный люк; 3 – твердосплавная футеровка; 4 – рубашка для охлаждения; 5 – зубчатая передача; 6 – опоры качения; 7 – редуктор; 8 – упругая муфта; 9 — электродвигатель

При производстве смеси для сплава ВК6 в такой мельнице для достижения требуемой зернистости время было сокращено в 1,7 раза против необходимого при скорости 60 % от критической. Это объясняется тем, что при большей скорости вращения увеличивается центробежная сила, прижимающая шары к стенке барабана, вследствие чего увеличивается угол наклона массы шаров и верхние шары падают (скатываются) с большей высоты, совершая большую работу. Скорость шаров, при кото­рой они начинают скатываться, также возрастает.

Увеличивается доля шаровой загрузки, находящейся в состоянии пе­рекатывания, т.е. большее число шаров активно участвует в измельчении материала. Более эффективно используются мелкие размольные тела, т.к. устраняется недостаток, заключающийся в меньшей кинетической энергии каждого шара (из-за меньшей массы), поскольку это компенсируется большей скоростью начального скатывания шара.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]