Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метрология конспект.doc
Скачиваний:
121
Добавлен:
18.04.2015
Размер:
949.25 Кб
Скачать

Пример для практического занятия.

Шкала интервалов величины Q можно представить в виде Q =Q0 + q[Q], где q — числовое значение величины; Q0 — начало отсчета шкалы; [Q] — единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета Q0 шкалы и единицы данной величины [Q]. Задать шкалу можно двумя путями. При первом пути выбираются два значения Q0 и Ql величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал (Q1 — Q0) — основным интервалом. Точка Q0 принимается за начало отсчета, а величина (Q1 — Q0)/n = [Q] за единицу Q. При этом число единиц n выбирается таким, чтобы [Q] было целой величиной. Перевод одной шкалы интервалов Q = Q0l + ql[Q]l в другую Q=Q02 + q2[Q]2 осуществляется по формуле

(1.1)

При втором пути единица воспроизводится непосредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирается каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода — шкала времени, в которой 1 с = 9 192 631 770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

Шкала Фаренгейта является шкалой интервалов. На ней Q0 — температура смеси льда, поваренной соли и нашатыря, Q1 — температура человеческого тела. Единица измерения — градус Фаренгейта: . Температура таяния смеси льда, соли и нашатыря оказалась равной 32°F, а температура кипения воды — 212°F. По шкале Цельсия Q0 — температура таяния льда, Q1 — температура кипения воды. Градус Цельсия .

Требуется получить формулу для перехода от одной шкалы к другой.

Решение. Формула для перехода определяется в соответствии с выражением (1.1). Значение разности температур по шкале Фаренгейта между точкой кипения воды и точкой таяния льда составляет 212°F - 32°F = 180°F. По шкале Цельсия интервал температур равен 100°С. Следовательно, 100°С = 180°F и отношение размеров единиц

Числовое значение интервала между началами отсчета по рассматриваемым шкалам, измеренного в градусах Фаренгейта ([Q]l = F), равно 32. Переход от температуры по шкале Фаренгейта к температуре по шкале Цельсия производится по формуле

Лекция 2.

Системы физических величин и их единиц, система СИ

Размер физической величины — это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас ФВ.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения Q=q[Q], связывающим между собой значение ФВ Q, числовое значение q и выбранную для измерения единицу [Q]. В зависимости от размера единицы будет меняться числовое значение ФВ, тогда как размер ее будет оставаться неизменным.

Размерность единиц ФВ - dim Q — выражение в форме степенного многочлена, отражающее связь данной величины с основными ФВ. Коэффициент пропорциональности принят равным единице:

dim Q = LαMβTγIδ..,

где L, М, Т, I— условные обозначения основных величин данной системы; α, β, γ, δ — целые или дробные, положительные или отрицательные вещественные числа. Показатель степени, в которую возведена размерность основной величины, называют показателем размерности. Если все показатели размерности равны нулю, то такую величину называют безразмерной.

Над размерностями можно производить действия умножения, деления, возведения в степень и извлечение корня. Понятие размерности широко используется:

• для перевода единиц из одной системы в другую;

• для проверки правильности сложных расчетных формул, полученных в результате теоретического вывода;

• при выяснении зависимости между величинами;

• в теории физического подобия.

Уравнения связи между величинами — уравнения, отражающие законы природы, в которых под буквенными символами понимаются ФВ. Они могут быть записаны в виде, не зависящем от набора единиц измерений входящих в них ФВ:

Q=KX'YbZ'...

Коэффициент К не зависит от выбора единиц измерений, он определяет связь между величинами. Например, площадь треугольника S равна половине произведения основания L на высоту h:

S= 0.5 Lh.

Коэффициент К=0,5 появился в связи с выбором не единиц измерений, а формы самих фигур.

Уравнения связи между числовыми значениями физических величин — уравнения, в которых под буквенными символами понимают числовые значения величин, соответствующие выбранным единицам. Вид этих уравнений зависит от выбранных единиц измерения. Они могут быть записаны в виде:

Q = KeKXαYβZg...,

где Ке — числовой коэффициент, зависящий от выбранной системы единиц. Например, уравнение связи между числовыми значениями площади треугольника и его геометрическими размерами имеет вид при условии, что площадь измеряется в квадратных метрах, а основание и высота соответственно в метрах и миллиметрах:

S = 0,5 Lh, т. е. Ке = 1,

или

S= 0,5∙10-6 Lh, т.е. Ке= 10-6 м2/мм2.

Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.

Обоснованно, но произвольным образом выбираются несколько ФВ, называемых основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.

Согласованная Международная система единиц физических величин была принята в 1960 г. XI Генеральной конференцией по мерам весам. Международная система - СИ (SI), SI - начальные буквы французского наименования Systeme International.

В Российской Федерации система СИ введена ГОСТ 8.417—81.

В названии системы ФВ применяют символы величин, принятых за основные. Например, система величин механики, в которой в качестве основных используются длина (L), масса (М) и время (T), называется системой LMT. Действующая в настоящее время международная система СИ должна обозначаться символами LMTIQNJ, соответствующими символам основных величин: длине (L), массе (М), времени (Т), силе электрического тока (I), температуре (Q), количеству вещества (N) и силе света (J) (таблица 1.1).

  • Метр равен длине пути, проходимого светом в вакууме за 1/299.792.458 долю секунды.

  • Килограмм равен массе международного прототипа килограмма.

  • Секунда равна 9.192.631.770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

  • Ампер равен силе не изменяющегося во времени электрического тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2•10 в минус 7-ой степени Н.

  • Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

  • Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0.012 кг.

  • Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540•10 в 12-ой степени Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Производные единицы системы СИ, имеющие собственное название, приведены в табл. 1.2.

Таблица 1.1. Основные и дополнительные единицы системы СИ.

Величина

Единица

Наименование

Размерность

Рекомендуемое

обозначение

Наименование

Обозначение

русское

междуна-

родное

Основные

Длина

L

l

метр

м

m

Масса

M

m

килограмм

кг

kg

Время

T

t

секунда

с

s

Сила электри-

ческого тока

I

I

ампер

А

A

Теромодина-

мическая температура

Q

T

кельвин

К

K

Количество вещества

N

n, v

моль

моль

mol

Сила света

J

J

канделла

кд

cd

Дополнительные

Плоский угол

-

-

радиан

рад

rad

Телесный угол

-

-

стерадиан

ср

sr

Таблица 1.2. Производные единицы системы СИ, имеющие специальное название.

Величина

Единица

Наименование

Размер-ность

Наимено-вание

Обозна-чение

Выражение через единицы Си

Частота

Т-1

герц

Гц

с-1

Сила, вес

LMT-2

ньютон

Н

м∙кг∙с-2

Давление, механическое напряжение

L-1MT-2

паскаль

Па

м-1∙кг∙с-2

Энергия, работа, количество теплоты

L2MT-2

джоуль

Дж

м2∙кг∙с-2

Мощность

L2MT-3

ватт

Вт

м2∙кг∙с-3

Количество электричества

TI

кулон

Кл

с∙А

Электрический напряжение, потенциал, электродвижущая сила

L2MT-3I-1

вольт

В

м2∙кг∙с-3∙А-1

Электрическая емкость

L-2M-1T4I2

фарад

Ф

м-2∙кг-1∙с4∙А2

Электрическое сопротивление

L2MT-3I-2

ом

Ом

м2∙кг∙с-3∙А-2

Электрическая проводимость

L-2M-1T3I2

сименс

См

м-2∙кг-1∙с3∙А2

Поток магнитной индукции

L2MT-2I-1

вебер

Вб

м2∙кг∙с-2∙А-1

Магнитная индукция

MT-2I-1

тесла

Тл

кг∙с-2∙А-1

Индуктивность

L2MT-2I-2

генри

Гн

м2∙кг∙с-2∙А-2

Световой поток

J

люмен

лм

кд∙ср

Освещенность

L-2J

люкс

лк

м-2∙кд∙ср

Активность радионуклида

Т-1

беккерель

Бк

с-1

Поглощенная доза ионизирующего излучения

L2T-2

грей

Гр

м2∙с-2

Эквивалентная доза излучения

L2T-2

зиверт

Зв

м2∙с-2

Производные единицы бывают когерентными и некогерентными. Когерентной называется производная единица ФВ, связанная с другими единицами системы уравнением, в котором числовой множитель принят равным единице. Например, единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейного и равномерного движения точки: v = L/t, где L — Длина пройденного пути; t — время движения. Подстановка вместо L и t их единиц в системе СИ дает v = 1 м/с. Следовательно, единица скорости является когерентной.

Единицы ФВ делятся на системные и внесистемные.

Системная единица — единица ФВ, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными.

Внесистемная единица — это единица ФВ, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на четыре вида:

•-допускаемые наравне с единицами СИ, например: единицы массы — тонна; плоского угла — градус, минута, секунда; объема — литр и др. Внесистемные единицы, допускаемые к применению наравне с единицами СИ, приведены в табл. 1.3;

• допускаемые к применению в специальных областях, например: астрономическая единица, парсек, световой год — единицы длины в астрономии; диоптрия — единица оптической силы в оптике; электрон-вольт — единица энергии в физике и т.д.;

• временно допускаемые к применению наравне с единицами СИ, например: морская миля — в морской навигации; карат — единица массы в ювелирном деле и др. Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;

• изъятые из употребления, например: миллиметр ртутного столба — единица давления; лошадиная сила — единица мощности и некоторые другие.

Таблица 1.3. Внесистемные единицы, допускаемые к применению наравне с единицами СИ

Наименование величины

Единица

Наименование

Обозна-чение

Соотношение с единицей СИ

масса

тонна

т

103 кг

атомная единица массы

а. е. м.

1.66057∙10-27 кг (приблизительно)

время

минута

мин

60 с

час

ч

3600 с

сутки

сут

86400 с

плоский угол

градус

°

(π/180) рад=1.745329..∙10-2 рад

минута

…′

(π/10800) рад=2.908882..∙10-4 рад

секунда

…″

(π/648000) рад=4.848137..∙10-6 рад

град

град

(π/200) рад

объем

литр

л

10-3 м3

длина

астрономическая единица

а. е.

1.45598∙1011 м (приблизительно)

световой год

св. год

9.4605∙1015 м (приблизительно)

парсек

пк

3.0857∙1016 м (приблизительно)

оптическая сила

диоптрия

дптр

1 м-1

площадь

гектар

га

104 м2

энергия

электрон-вольт

эВ

1.60219∙10-19 Дж (приблизительно)

полная мощность

вольт-ампер

В∙А

-

реактивная мощность

вар

вар

-

Различают кратные и дольные единицы ФВ.

Кратная единица— это единица ФВ, в целое число раз превышающая системную или внесистемную единицу. Например, единица длины - километр - равна 103 м, т.е. кратна метру.

Дольная единица — единица ФВ, значение которой в целое число раз меньше системной или внесистемной единицы. Например, единица длины - миллиметр равна 10-3 м, т.е. является дольной. Приставки для образования кратных и дольных единиц приведены в табл. 1.4.

В системе СИ впервые введено понятие дополнительных единиц, к которым отнесены единицы плоского и телесного углов — радиан и стерадиан.

Таблица 1.4. Образование дольных и кратных единиц и их наименований

Множи-тель

При-ставка

Обозначение приставки

Множи-тель

При-ставка

Обозначение приставки

Между-народное

Русское

Между-народное

Русское

1018

экса

E

Э

10-1

деци

d

д

1015

пета

P

П

10-2

санти

c

с

1012

тера

T

Т

10-3

мили

m

м

109

гига

G

Г

10-6

микро

μ

мк

106

мега

M

М

10-9

нано

n

н

103

кило

k

к

10-12

пико

p

п

102

гекто

h

г

10-15

фемто

f

ф

101

дека

da

да

10-18

атто

a

а

Лекция 3.

Виды и методы измерений. Средства измерений (начало).

Виды и методы измерений

Измерение — процесс, заключающийся в сравнении путем физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

Результатом процесса является значение физической величины Q = q[Q] , где q - числовое значение физической величины в принятых единицах; [Q] - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений.

Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.

По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.

Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.

Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.

По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных.

Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.

Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями.

Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением.

Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.

Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений.

Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь.

Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними.

Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

Средства измерений

Эталоны, меры, образцовые средства измерений.

Измерения выполняются с применением технических средств. Необходимыми техническими средствами для проведения измерений являются меры и измерительные приборы.

  • Меры - средства измерений, предназначенные для воспроизведения физической величины заданного размера. Меры наивысшего порядка точности называют эталонами.

  • Эталоны - средства измерений или их комплексы, обеспечивающие воспроизведение и хранение узаконенных единиц физических величин, а также передачу их размера нижестоящим по поверочной схеме средствам измерения.

  • Образцовые средства измерений - меры, измерительные приборы или преобразователи, утвержденные в качестве образцовых для поверки по ним других средств измерений.

  • Рабочие средства измерений - такие средства, которые применяют для измерений, не связанных с передачей размера единиц.