Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кон.эл.ток-04-2.doc
Скачиваний:
278
Добавлен:
12.04.2015
Размер:
5.43 Mб
Скачать

2.4.2. Емкость цилиндрического конденсатора

Цилиндрический конденсатор представляет собой устройство из двух цилиндрических обкладок, имеющих общую ось (коаксиальных цилиндров), разделенных слоем диэлектрика цилиндрической формы (рис. 2.5).

Электрическое поле такого конденсатора представляет собой суперпозицию двух полей цилиндрических поверхностей, имеющих равные по величине, но противоположные по знаку заряды.

Напряженность такого электрического поля

. (2.18)

Разность потенциалов между обкладками

, (2.19)

где R1 и R2 – соответственно радиусы внутренней и внешней обкладок.

Таким образом,

. (2.20)

При d = R2 - R1 << R1

,

где d = R2 - R1 – расстояние между обкладками.

Тогда

. (2.21)

Следовательно, при указанных условиях емкость цилиндрического конденсатора можно рассчитывать по формуле емкости плоского конденсатора.

2.4.3. Емкость сферического конденсатора

Сферический конденсатор представляет собой устройство, состоящее из двух сферических поверхностей, которые имеют общий центр различных радиусов, разделенных сферическим слоем диэлектрика (рис. 2.6).

Напряженность электрического поля между обкладками такого конденсатора

. (2.22)

Разность потенциалов между обкладками

.(2.23)

Таким образом,

. (2.24)

При R2 - R1 = d << R1R2

. (2.25)

Следовательно, при указанных условиях емкость сферического конденсатора можно рассчитывать по формуле емкости плоского конденсатора.

2.5. Соединения конденсаторов

Отдельные конденсаторы обладают определенной емкостью и могут работать только при подключении их к характерным для них напряжениям, которые определяются свойствами и толщиной диэлектрика. Если напряжение превышает допустимое - происходит пробой конденсатора. Поэтому очень часто из имеющихся в наличии конденсаторов собирают батарею необходимой емкости, предназначенную для работы при более высоких напряжениях. Существует следующие виды соединения конденсаторов: последовательное, параллельное и смешанное.

2.5.1. Последовательное соединение конденсаторов

При последовательном соединении каждая из обкладок какого-либо конденсатора соединяется только с одной обкладкой другого конденсатора, образуется цепочка конденсаторов (рис. 2.7). К крайним обкладкам такой цепочки прикладывается соответствующее напряжение, под действием которого происходит перераспределение электрических зарядов, при этом заряды на всех промежуточных обкладках равны по величине, но чередуются по знаку.

В результате перераспределения зарядов заряд батареи (цепочки) равен заряду одного конденсатора. Напряжение между обкладками отдельно взятого конденсатора обратно пропорционально его емкости, а напряжение батареи равно сумме напряжений каждого из входящих в батарею конденсаторов.

Такое соединение конденсаторов применяется в тех случаях, когда необходимо получить емкость, работающую при высоких напряжениях.

Так как в рассматриваемом случае

,

а ,

то будем иметь

или

. (2.26)

Таким образом, при последовательном соединении конденсаторов величина, обратная емкости батареи, равна сумме обратных величин емкостей отдельных конденсаторов.

Если емкости отдельных конденсаторов равны:

C1 = C2 = C3 = Cn,

то

, , (2.27)

т. е. при последовательном соединении n одинаковых конденсаторов, емкость батареи в n раз меньше емкости одного конденсатора.