Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 6 МВ-4к1.doc
Скачиваний:
61
Добавлен:
10.04.2015
Размер:
600.58 Кб
Скачать

2. Определение и состав портландцемента

Портландцемент – гидравлическое вяжущее, продукт тонкого измельчения клинкера, получаемого обжигом до спекания, т.е. частичного плавления сырьевой смеси, обеспечивающей преобладание в нем высокоосновных силикатов кальция. Для улучшения свойств цемента при помоле клинкера добавляют 1,5... 3,5 % гипса (в пересчете на SO3)/

Клинкером называют любой спекшийся материал. В данном случае это так называемый силикатный клинкер. В нем 70...80 % силикатов кальция. Всего в клинкере более десятка веществ, но основных минералов, оказывающих главное влияние на свойства цемента – четыре (табл.1). Гипс (природный минерал или мономинеральная горная порода СaSO4.2H2O) является обязательной составной частью современного портландцемента. Его роль довольно значительна. Во-первых, гипс замедляет схватывание клинкера. Без него схватывание происходило бы за 2-3 минуты, так что цементный материал невозможно было бы уложить и отформовать. Во-вторых, гипс способен при твердении увеличиваться в объеме, а также образовывать химические соединения с алюминатами клинкера также с увеличением объема, что приводит к уплотнению и упрочнению цементного камня.

Таблица 1. Состав портландцементного клинкера

Примечания к таблице

  1. . В столбце «Химическая формула» в скобках даны формулы, принятые в химии силикатов и часто встречающиеся в учебниках по строительным материалам. В этих формулах С означает СаО, S – SiO2, A – Al2O3, F – Fe2O3.

  2. В таблице приведены так называемые стехиометрические формулы, которые выражают только соотношение в соединении условных оксидов элементов. Фактически приведенные соединения являются солями сильного основания Са(ОН)2 и слабых кислот, содержащих в анионе кремний, алюминий, железо. Например, основной минерал – алит, записанный как 3СаО∙SiO2 можно представить обычной химической формулой Са3SiO5, т.е. как соль кальция от кислоты Н6SiO5 (это одна из поликремниевых кислот).

Таким образом, в состав портландцемента входят минералы клинкера, гипс, а также так называемые активные минеральные или гидравлические добавки, основное назначение которых увеличить водостойкость портландцемента. Зачем это надо и что снижает водостойкость цемента можно понять, выяснив роль каждого компонента в составе цемента, их взаимодействие с водой и между собой, влияние этих взаимодействий на свойства цемента.

3. Гидратация минералов клинкера и другие химические реакции при твердении цемента (Химия портландцемента). Влияние химических превращений на свойства.

Гидролиз силикатов цемента (алита и белита)

Реакция гидролиза алита была записана в прошлой лекции. Поскольку алит - главный минерал цемента, эту реакцию надо знать и понимать ее роль в свойствах цемента. Поэтому повторим ее еще раз:

2(3CaOSiO2) + 6H2O = 3CaO2SiO23H2O + 3Ca(OH)2.

Совершенно аналогично происходит гидролиз и второго силиката цемента – белита – с той лишь разницей, что извести выделяется значительно меньше на ту же массу исходного минерала, а также и содержание белита в цементе меньше, чем алита:

2(2CaOSiO2) + 4H2O = 3CaO2SiO23H2O + Ca(OH)2.

В результате этих реакций образуется нерастворимый водостойкий гидросиликат кальция, который в незакристаллизованном состоянии (в виде твердого геля) обволакивает остальные (кристаллические) компоненты цементного камня (см. ниже). Второй продукт реакции – известь – оказывается, наоборот, наименее водостойким компонентом цементного камня, вследствие частичной растворимости извести. Водостойкость цемента в принципе достаточна для бетонных и железобетонных надземных конструкций. Если бетон на портландцементе эксплуатируется в подводных или подземных сооружениях, то для повышения его водостойкости известь, выделяющуюся при гидролизе алита и белита, необходимо связывать в нерастворимые соединения. Эту роль выполняют активные минеральные добавки.

Активные минеральные (гидравлические) добавки, их взаимодействие с известью.

В качестве активных минеральных добавок применяют природные или искусственные материалы, содержащие в своем составе в значительном количестве так называемый активный кремнезем – оксид кремния SiO2 – в аморфном и высокодисперсном состоянии. Именно благодаря этим свойствам (аморфности и высокой дисперсности) происходит связывание извести активным кремнеземом по реакции:

Са(ОН)2 + SiO2(аморф.) = CaO SiO2H2O

Продукт реакции по-другому можно записать так: СaSiO3∙H2O. Это еще один гидросиликат кальция, называемый низкоосновным. Он также нерастворим в воде, хотя уступает в водостойкости высокоосновным гидросиликатам, получающимся при гидролизе алита и белита. Таким образом, добавки, содержащие активный кремнезем, повышают гидравличность вяжущего, поэтому их называют также гидравлическими добавками.

Гидравлических, или активных минеральных, добавок известно несколько типов, но в цементе применяют обычно шлак или пуццоланы. Доменный шлак при быстром охлаждении остается незакристаллизованным, поэтому и оксид кремния в нем находится в аморфном состоянии. Разумеется, перед добавлением в цемент шлак размалывают в порошок. К пуццоланам относят горные породы, в которых оксид кремния остался незакристаллизованным – вулканический пепел, диатомит, трепел, опока и др. Широко распространенные в химии и технологии вяжущих термины «пуццоланы», «пуццоланизация» уходят корнями в историю Древнего Рима. Древние римляне добавляли к извести вулканический пепел. Эту смесь и назвали позднее римским цементом. Гидратация и твердение его в точности соответствуют приведенной реакции извести с аморфным кремнеземом. Вулканический пепел добывали вблизи местечка, более позднее (итальянское) название которого звучит как Поццуоли. Отсюда и произошло понятие пуццоланы.

Гидратация трехкальциевого алюмината и гидролиз четырехальциевого алюмоферрита

Трехкальциевый алюминат (см. табл.1) при затворении цемента присоединяет воду по реакции:

3CaOAl2O3 + 6H2O = 3CaOAl2O36H2O

Гидролиз четырехкальциевого алюмоферрита принято записывать следующим уравнением реакции:

4CaOAl2O3Fe2O3 + nH2O = 3CaOAl2O3 6H2O + CaOFe2O3(n-6)H2O

Наиболее положительное влияние на свойства цемента оказывает гидроферрит кальция – последнее из веществ, записанных в правой части второй реакции. Этот минерал (продукты гидратации, как и исходные вещества, также можно называть минералами искусственного происхождения) придает цементному камню дополнительную прочность. Он всегда образуется в кристаллическом состоянии. Нерастворим в воде (водостоек). Из-за присутствия железа имеет темный цвет. Серый цвет цемента обусловлен именно присутствием железа (как элемента, а не как металла!).

Образующийся по обеим реакциям гидроалюминат 3CaOAl2O3 6H2O получается в виде хрупких кристаллов. Несмотря на водостойкость и большую скорость твердения, он оказывает отрицательное влияние на свойства цемента – снижает прочность и коррозионную стойкость цементного камня. Для уменьшения его содержания в затвердевшем цементе и вводится добавка гипса.

Роль гипса в процессах гидратации цемента. Эттрингит.

Добавляемый к портландцементному клинкеру природный гипс CaSO4∙2H2O при затворении вступает в реакцию с трехкальциевым алюминатом:

3CaOAl2O3 + 3(CaSO42H2O) + 26H2O = = 3CaOAl2O33CaSO432H2O

Продукт реакции – гидросульфоалюминат кальция – более известен под названием «эттрингит». Реакция идет с увеличением абсолютного объема (с расширением), поэтому образующийся в ограниченном пространстве эттрингит уплотняет и упрочняет цементный камень в процессе твердения. При этом значительно снижается возможность образования хрупкого гидроалюмината.

Кроме описанной здесь положительной роли эттрингита, известно также его отрицательное, корродирующее действие на цементный камень и бетон. Коррозия под действием эттрингита происходит в том случае, если он по каким-то причинам образуется в порах уже затвердевшего ранее цементного камня и разрушает его вследствие «распирания» стенок пор. (Процессы коррозии бетона будут рассмотрены в курсе строительных материалов)

Строение цементного камня

В предыдущей лекции отмечалось, что камень вяжущего в общем случае состоит из кристаллического сростка, незакристаллизовавшейся части (твердого геля), непрореагировавших исходных минералов и пор.

На основании рассмотренных здесь реакций, можно конкретизировать строение цементного камня (затвердевшего портландцемента).

Гидроферрит, эттрингит, оставшийся гидроалюминат, и известь – кристаллизуются и образуют поликристаллическую систему из кристаллов неправильной формы, сросшихся в беспорядке. Это и есть кристаллический сросток цементного камня.

Гидросиликаты не доходят до стадии кристаллизации. Они образуют аморфную систему – гель, обволакивающий кристаллический сросток. Благодаря этому камень и получается достаточно прочным.

Из исходных минералов дольше всех гидратируются белит и четырехкальциевый алюмоферит. Но и гидратация всего зерна (частицы) цемента задерживается из-за отмеченной в прошлой лекции медленной диффузии воды в топохимической стадии гидратации. Полная гидратация частицы цемента может продолжаться около двух лет при благоприятных условиях (влажный воздух, положительная температура). Поэтому прочность цементного камня и цементного бетона нарастает не только в течение 28 суток (срок испытания на прочность), но и последующие месяцы. Через 28 суток гидратация цемента проходит всего лишь на 70 %, а процент прочности от максимально достижимого и того меньше.

И, наконец, поры снижают морозостойкость и прочность цементного камня при неправильном формировании пористой структуры, например, пропаривание при температуре выше 90 градусов или снижение температуры ниже нуля до достижения хотя бы 70%-ной гидратации.